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Preface 

Advance in science builds upon the continuous exchange of ideas, and the 
confrontation of theory and experiment or observation. Both should be exe- 
cuted by researchers with a vast knowledge of the physics and mathematics 
involved. 

The Summer Schools of the European Astrophysical Doctoral Network 
aim at contributing to this in providing doctoral students in astrophysics 
with opportunities to enrich their knowledge in particular fields in a truly 
international setting. Young scientists from all over Europe (and abroad!) 
gather for two weeks, study and work together, and enjoy the multicultural 
atmosphere. Future collaboration across the border may find its roots in the 
lively atmospheres of the Schools. 

The 1996 School dealt with the atmospheres of stars, the various theories 
that describe their structure and the interactions with the interior of the 
stars as well as with the interstellar environment, and the observations that 
support, modify and sometimes contradict these theories. 

The School aimed at 4 goals: 

- To offer an insight into problems related to stellar atmospheres for both 
cool and hot stars, at a high-quality level. 

- To offer opportunities to deal with modern technologies in analysing ob- 
servational data versus theoretical modelling. 

- To learn to appreciate teamwork. 
- To work and live in an international, multicultural environment. 

Forty-three students attended the 1996 School, 11 females and 32 males. 
They came from 15 different countries. Three participants came from outside 
the European Union. Although a majority had a research interest in the topic 
of the School, Ph.D. students in all possible subdisciplines attended, their 
interest ranging from cosmology, over galactic structure, stellar evolution to 
helioseismology. 

Each morning, two of the eight lecturers presented their views on one of 
the topics in the field. This volume contains all the lectures presented at the 
School. In the afternoon, practical (computer) projects with observational 
data were organized at the Royal Observatory of Belgium. The content of 
these projects was designed by the lecturers. The students learnt to work 



VI 

with different astrophysical data analysis packages. To ensure multicultural 
cooperation the participants were thoroughly mixed in the project teams. 
The following projects were offered to the students: the infrared continuum 
and excess of hot stars (Lamers &= Bjorkman), the Sobolev method with 
exact integration for P Cygni profiles (Fullerton), analysis of ROSAT data 
(Schmitt), spectrum synthesis (Hubeny). Each team of students had to choose 
two projects. 

A cheese and wine evening, offered by the university, was organized for 
students and participants. The students themselves organized a dining-out 
evening (with a little help from the local organization), attended by practi- 
cally all students and lecturers. Coffee breaks and common lunches added to 
familiarize us with one another. 

Important parts of the program were the Show and Tell parts, which took 
up almost 5 hours. Students presented their own research topic and their 
interest in it in 5-minutes talks (with one or two transparencies), followed by 
a few questions. 

The organization of the School is impossible without the financial help of 
various bodies. We take the opportunity to thank the European Commission 
that financed the larger part of the School, more specifically through the 
ERASMUS and the Human Capital and Mobility Programmes. We also thank 
the authorities of the Vrije Universiteit Brussel and the Royal Observatory of 
Belgium for their hospitality, services and financial support. The university 
provided favourable conditions for housing and meals. We also appreciated 
very much the financial support from the Swedish government and from the 
Fund for Scientific Research of Flanders (F.W.O.). 

One of us (J.P.D.G.) heartedly thanks Vincent Icke, the organizer of the 
previous School in Leiden, for the valuable preliminary information on the 
organization. It helped me getting things on the move much easier. And the 
T-shirt still fits me well, Icke. Special thanks go to Tom Ray, secretary of the 
EADN, whose extensive advice and support definitely helped me through 
some tough moments, and to Koen Vyverman, whose organizational talent 
contributed much to the smooth and pleasant running of the School. 

The enthusiasm of both lecturers and students, and the many lively dis- 
cussions, made this School a truly European experience. 

This publication was made possible thanks to the interest of Springer- 
Verlag, through Prof. W. BeiglbDck. 

Brussels, August 1997 

Jean-Pierre De Greve Ronny Blomme 
Herman Hensberge 
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Stellar Atmospheres Theory: An Introduction 

I. Hubeny 

Universities Space Research Association, NASA Goddard Space Flight Center, 
Code 681, Greenbelt, MD 20771, USA 
e-maih hubeny ~hrs. gsfc.nasa.gov 

1 F u n d a m e n t a l  C o n c e p t s  

1.1 W h a t  Is a Stel lar  Atmosphere~ and  W h y  Do We S t u d y  I t?  

By the term stellar atmosphere we understand any medium connected phys- 
ically to a star from which the photons escape to the surrounding space. In 
other words, it is a region where the radiation, observable by a distant ob- 
server, originates. Since in the vast majority of cases the radiation is the only 
information about a distant astronomical object we have (exceptions being 
a direct detection of solar wind particles, neutrinos from the Sun and SN 
1987a, or gravitational waves), all the information we gather about stars is 
derived from analysis of their radiation. 

It is therefore of considerable importance to develop reliable methods 
which are able to decode the information about a star contained in its spec- 
trum with confidence. Having understood the physics of the problem and 
being able to carry out detailed numerical simulations will enable us to con- 
struct theoretical models of a stellar atmosphere and predict a stellar spec- 
trum. This has important applications in other branches of astrophysics, such 
as i) derived stellar parameters can be used to verify predictions of the stel- 
lar evolution theory; ii) models provide ionizing fluxes for the interstellar 
medium and nebular models; iii) predicted stellar spectra are basic blocks for 
population syntheses of stellar clusters, starburst regions, and whole galaxies. 
Moreover, very hot and massive stars have special significance. They are very 
bright, and therefore may be studied spectroscopically as individual objects 
in distant galaxies. Reliable model atmospheres for these stars may therefore 
yield invaluable independent information about distant galaxies, like chemical 
composition, and, possibly, reliable distances. 

This alone would easily substantiate viewing the stellar atmosphere theory 
as an independent, and very important, branch of modern astrophysics. Yet, 
in the global astrophysical context, there is another, and equally important, 
contribution of the stellar atmospheres theory. Stellar atmospheres are the 
best studied example of a medium where radiation is not only a probe of 
the physical state, but is in fact an important constituent. In other words, 
radiation in fact determines the structure of the medium, yet the medium is 
probed only by this radiation. 
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Unlike laboratory physics, where one can change a setup of the experiment 
in order to examine various aspects of the studied structures separately, we do 
not have this luxury in astrophysics: we are stuck with the observed spectrum 
so we should better make a good use of it. This is exactly what the stellar 
atmosphere theory is doing for almost a century now. Consequently, it is 
developed to such an extent that it provides an excellent methodological 
guide for other situations where the radiation has the dual role of a probe 
and a constituent. Examples of such astronomical objects are the interstellar 
medium, H II regions, and, in particular, accretion disks. 

There has been a significant progress in the field of stellar atmospheres 
achieved in recent years. The progress was motivated by an unprecedented 
increase of quality of ground- and space-based observations, and by develop- 
ment of extremely fast and efficient numerical methods. However, despite of 
this progress, the stellar atmospheres theory is still far from being sufficiently 
developed. It is a mature field, yet it is now reaching qualitatively new levels 
of sophistication. In short, it is a field worth pursuing, offering as a reward a 
significant contribution to our knowledge about the Universe. 

The main goal of this lecture is to provide a gentle introduction to the 
basic concepts needed to understand the fundamental physics of stellar atmo- 
spheres, as well as the leading principles behind recent developments. Partic- 
ular emphasis will be devoted to the classical plane-parallel atmospheres in 
hydrostatic and radiative equilibrium. Topics which concentrate specifically 
on non-static phenomena (stellar winds), and on departures from radiative 
equilibrium (stellar chromospheres and coronae), are covered in other lectures 
of this volume. 

There is no textbook that would fully cover the topics discussed in this lec- 
ture. The fundamental textbook of the field, Mihalas (1978), is still a highly 
recommended text, although it does not cover important recent develop- 
ments, like for instance the ALI method. The third edition of the book is now 
in preparation, but it will take a couple of years before it is available. There is 
a recent textbook by Rutten (1995), distributed electronically, which covers 
both the basic concepts as well as some of the modern development, and is 
highly recommended to the beginner in the field. There are two books edited 
by Kalkofen which present a collection of reviews on various mathematical 
and numerical aspects of radiative transfer (Kalkofen 1984; 1987). A good 
textbook that covers both the theoretical and observational aspects of the 
stellar atmospheres is that by Gray (1992). Other related textbooks include 
Rybicki and Lightman (1979), Shu (1991), and an elementary-level textbook 
by BShm-Vitense (1989). An old but excellent textbook on radiative trans- 
fer is Jefferies (1968). Besides these books, there are several excellent review 
papers covering various topics (e.g. Kudritzki 1988; Kudritzki and Hummer 
1990), and several conference proceedings which contain many interesting 
papers on the stellar atmospheres theory - Properties of Hot Luminous Stars 
(Garmany 1990); Stellar Atmospheres: Beyond Classical Models (Crivetlari, 
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Hubeny, and Hummer 1991); The Atmospheres of Early-Type Stars (Heber 
and Jeffery 1992); and Hydrogen-Deficient Stars (Jeffery and Heber 1996); 
to name just a few of the most important ones. 

1.2 Basic Structural Equations 

A stellar atmosphere is generally a plasma composed of many kinds of parti- 
cles, namely atoms, ions, free electrons, molecules, or even dust grains, and 
photons. Typical values of temperature range from 103 K (or even less in 
the coolest stars) to a few times 105 K in the hottest stars (temperature is 
even higher, 106 - 107 K, in stellar coronae). Likewise, the total particle den- 
sity ranges from, say, 108 to 1016 cm -3. Under such conditions, the natural 
starting point for the physical description is the kinetic theory. 

We start with very general equations, in order to emphasize a close con- 
nection of the stellar atmospheres theory and other branches of physics. We 
will then simplify these equations to the form which is used in most textbooks. 

Specifically, the most general quantity which describes the system is the 
distribution function fi(r, p, t), which has the meaning that f~(r, p, t )drdp 
is the number of particles of kind i in an elementary volume of the phase 
space at position r, momentum p, and at time t. The equation which de- 
scribes a development of the distribution function is the well-known kinetic, 
or Boltzmann, equation, written as 

at + (u. v )  + (F.  Vp) = \ Dt ' 

where ~7 and XYp are the usual nabla differential operators with respect to 
position and momentum components, respectively; u is the particle velocity, 
and F is the external force. The term (Dr/Dr)ton is the so-called collisional 
term, which describes creations and destructions of particles of type i with 
the position (r, r + dr) and momentum (p, p + dp). 

The kinetic equation provides a full description of the system. However, 
the number of unknowns is enormous. It should be realized that the individual 
particles are, in general, not just the atoms and ions, but in fact all the 
individual excitation states of atoms, ions, or molecules. According to the 
standard procedure, one simplifies the system by constructing equations for 
the moments  of the distribution function, i.e. the integrals over momentum 
weighted by various powers of p. I shall present only the final equations; the 
reader is referred to any standard textbook of the kinetic theory for a detailed 
derivation and an extensive discussion. 

The resulting set of equations are the well-known hydrodynamic equa- 
tions, namely the continuity equation, 

0p 
o-7 + v .  (pv) = 0 ,  (2) 
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the momentum equation, 

and the energy balance equation, 

Here, v is the macroscopic velocity, p the total mass density, P the pressure, 
f the external force, E the internal energy, Frad the radiation flux, and F,,, 
the conductive flux. Equations (2) - (4) represent moment equations of the 
kinetic equation, (I),  summed over all kinds of particles. 

We may also write a zeroth-order moment equation for the individual 
kinds of particles, i.e. the conservation equation for particles of type i, 

where ni is the number density (or the occupation number, or population) of 
particles of type i. One may also write momentum and energy balance equa- 
tions for the individual particles if needed (e.g. if different kinds of particles 
have different macroscopic velocities). We will not consider these situations 
here. 

The moment equations are still quite general. An application of those 
equations is discussed in other papers of this volume. Here, I will present a 
further significant simplification of the system, which applies for the case of a 
stationary (i.e. a / d t  = O), and moreover static (v = 0) medium. Finally, we 
will consider a 1-D situation, i.e. all quantities depend on the t-coordinate 
only, 

where o is the Stefan-Boltzmann constant, and Teff is the so-called effective 
temperature. The first equation is called the statistical equilibrium equation, 
the second one the hydrostatic equilibrium equation, while the last one, ex- 
pressing the fact that the only mechanism that transports energy is radiation, 
is called the mdiative equilibrium equation. (Notice that the conductive flux 
was neglected here, which is a common approximation in the stellar atmo- 
spheres theory. However, this approximation breaks down, for instance, in 
the solar transition region.) 

What about convection, which we know may contribute significantly to 
the energy balance in certain types of stellar atmospheres? Convection is a 



Stellar Atmospheres Theory: An Introduction 5 

transport of energy by rising and falling bubbles of material with properties 
(e.g. temperature) different from the ambient medium. It is therefore, by its 
very nature, a non-stationary and non-homogeneous phenomenon. Putt ing 
v = 0 and assuming a 1-D medium means, strictly speaking, that  convection 
is a priori neglected. However, there are descriptions, like the mixing-length 
theory (see any standard textbook, like Mihalas 1978), that  simplify the 
problem and cast it in the form of 1-D stationary equation, viz. 

Frad q- Fconv -- ~T~eff , (9) 

where the convective flux Feonv is a specified function of basic state parame- 
ters (temperature, density, etc.) 

So far, we have specified the kinetic equation for particles. The same 
may be done for photons. Since, as explained above, photons have a special 
significance in stellar atmospheres, we will consider the kinetic equation for 
photons - the so-called radiative transfer equation - in the Sect. 2. 

1.3 LTE Versus  N o n - L T E  

It is well known from statistical physics that  a description of material prop- 
erties is greatly simplified if the thermodynamic equilibrium (TE) holds. In 
this state, the particle velocity distributions as well as the distributions of 
atoms over excitation and ionization states are specified uniquely by two 
thermodynamic variables. In the stellar atmospheres context, these variables 
are usually chosen to be the absolute temperature T, and the total particle 
number density, N, or the electron number density, ne. From the very nature 
of a stellar atmosphere it is clear that it cannot be in thermodynamic equilib- 
rium - we see a star, therefore we know that  photons must be escaping. Since 
photons carry a significant momentum and energy, the elementary fact of 
photon escape has to give rise of significant gradients of the state parameters 
in the stellar outer layers. 

However, even if the assumption of TE cannot be applied for a stellar 
atmosphere, we may still use the concept of local thermodynamic equilibrium 
- LTE. This assumption asserts that  we may employ the standard thermody- 
namic relations not globally for the whole atmosphere, but locally, for local 
values of T(r) and N(r)  or ne(r), despite the gradients that exist in the at- 
mosphere. This assumption simplifies the problem enormously, for it implies 
that  all the particle distribution functions may be evaluated locally, with- 
out reference to the physical ensemble in which the given material is found. 
Notice that  the equilibrium values of distribution functions are assigned to 
massive particles; the radiation field is allowed to depart from its equilibrium, 
Planckian - (22), distribution function. 

Specifically, LTE is characterized by the following three distributions: 
- Maxwellian velocity distribution of particles 

f (v )dv  = (m/2~rkT) s/2 exp( -mv2/2kT)dv  , (10) 
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where m is the particle mass, and k the Boltzmann constant. 
- Boltzmann excitation equation, 

= exp [ - ( E j  ( i i) 

where g~ is the statistical weight of level i, and E~ the level energy, measured 
from the ground state. 
- Saha ionization equation, 

NI = ne U1 T_3/2 NI+t ~ C exp(X l / kT)  , (12) 

where NI is the total  number density of ionization stage I, U is the parti t ion 
function, defined by U = ~-~o~ gi e x p ( - E i / k T ) ;  Xz is the ionization potential 
of ion I, and C = (h2/2~rmk) 3/2 is a constant (= 2.07 x 10 -16 in cgs units). It 
should be stressed that  in the astrophysical LTE description, the same tem- 
perature T applies to all kinds of particles, and to all kinds of distributions, 
(10)- (12). 

Equations (10) - (12) define the state of LTE from the macroscopic point 
of view. Microscopically, LTE holds if all atomic processes are in detailed bal- 
ance, i.e. if the number of processes A --+ B is exactly balanced by the number 
of inverse processes B -+ A. By A and B we mean any particle states be- 
tween which there exists a physically reasonable transition. For instance, A 
is an atom in an excited state i, and B the same atom in another state j 
(either of the same ion as i, in which case the process is an excitation/de- 
excitation; or of the higher or lower ion, in which case the term is an ioniza- 
t ion/recombination).  An illuminating discussion is presented in the textbook 
by Oxenius (1986). 

In contrast, by the term non-LTE (or NLTE) we understand any state 
that  departs from LTE. In practice, one usually means that  populations of 
some selected energy levels of some selected atoms/ions are allowed to depart 
from their LTE value, while velocity distributions of all particles are assumed 
to be Maxwellian, (10), moreover with the same kinetic temperature,  T. 

One of the big issues of modern stellar atmospheres theory is whether, and 
if so to what extent, should departures from LTE be accounted for in numeri- 
cal modeling. This question will be discussed in more detail later on (Sects. 3, 
5). Generally, to understand why and where we may expect departures from 
LTE, let us turn to the microscopic definition of LTE. It is clear that  LTE 
breaks down if the detailed balance in at least one transition A -+ B breaks 
down. We distinguish the collisional transitions (arising due to interactions 
between two or more massive particles), and radiative transitions (interac- 
tions involving particles and photons). Under stellar atmospheric conditions, 
collisions between massive particles tend to maintain the local equilibrium 
(since velocities are Maxwellian). Therefore, the validity of LTE hinges on 
whether the radiative transitions are in detailed balance or not. 
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Again, the fact that the radiation escapes from a star implies that  LTE 
should eventually break down at a certain point in the atmosphere. Essen- 
tially, this is because detailed balance in radiative transitions generally breaks 
down at a certain point near the surface. Since photons escape (and more 
so from the uppermost layers), there must be a lack of them there. Conse- 
quently, the number of photoexcitations (or any atomic transition induced 
by absorbing a photon) is less than a number of inverse process, spontaneous 
de-excitations (we neglect here, for simplicity, stimulated emission). 

These considerations explain that we may expect departures from LTE 
if the following two conditions are met: i) radiative rates in some important 
atomic transition dominate over the collisional rates; and ii) radiation is not 
in equilibrium, i.e. the intensity does not have the Planckian distribution. 
Later, we will show how these conditions are satisfied in different stellar 
types. However, some general features can be seen immediately. Collisional 
rates are proportional to the particle density; it is therefore clear that  for 
high densities the departures from LTE tend to be small. Likewise, deep 
in the atmosphere, photons do not escape, and so the intensity is close to 
the equilibrium value. Departures from LTE are therefore small, even if the 
radiative rates dominate over the collisional rates. 

2 R a d i a t i v e  T r a n s f e r  E q u a t i o n  

As explained above, radiation plays a somewhat privileged role in the stellar 
atmospheres theory. This is the reason why we consider the radiative transfer 
equation separately from equations describing the material properties. The 
dominant role of radiation is also reflected in the terminology - the whole 
stellar atmosphere problem is sometimes referred to as a solving the radiative 
transfer equation with constraints, i.e. viewing all the material equations as 
mere "constraints". 

As discussed in the preceding section, one may view the radiative transfer 
equation as a kinetic equation for photons. In the astronomical literature, it 
is customary to start with a phenomenological derivation of the radiative 
transfer equation, and to show later that  this equation is in fact equivalent 
to the kinetic equation. 

It should be realized, however, that  when viewing radiation as an ensem- 
ble of mutually non-interacting, massless particles - photons, and describing 
the interaction between radiation and matter in terms of simple collisions 
(interactions) between photons and massive particles, the wave phenomena 
connected with radiation are in fact neglected. This is a good approximation 
if i) the wavelength of radiation is much smaller than the typical distance 
between massive particles; and if ii) the particle positions are random. These 
conditions are well satisfied under the stellar atmospheric conditions: we deal 
with a hot plasma, so the particle positions are indeed random. For optical, 
UV, and even higher-frequency radiation, the wavelengths (A < 10 -4 cm) 
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are indeed smaller than typical interparticle distances. For infrared and radio 
wavelengths, some wave phenomena (e.g. refraction) may actually play a role 
in the radiative transfer. 

In the following, we will adhere to the photon picture, and neglect all 
the wave phenomena. A somewhat special case is the polarization of radi- 
ation. Polarization will also be neglected here, i.e. we assume an unpolar- 
ized radiation. We will see in other lectures (e.g., Bjorkman, this Volume), 
that  polarization of radiation may actually play an important diagnostic role 
in certain stellar atmospheric structures (as an indicator of asymmetries of 
the medium). It is possible to extend the usual formalism of the transfer 
equation to account for polarization, by introducing a vector quantity (the 
so-called Stokes vector) instead of scalar intensity of radiation, and to write 
down the transfer equation in the vector form. We will not consider this case 
here; the interested reader is referred to standard textbooks - Chandrasekhar 
(1960); or recently Stenflo (1994); or excellent review articles (several papers 
in Kalkofen 1987). 

2.1 I n t e n s i t y  of  R a d i a t i o n  a n d  R e l a t e d  Q u a n t i t i e s  

We start with phenomenological definitions. The specific intensity, I(r,  n, v, t), 
of radiation at position r, traveling in direction n, with frequency v, at time 
t is defined such that  the energy transported by radiation in the frequency 
range (v, v + dr) ,  across an elementary area dS, into a solid angle dw in a 
time interval d* is 

dE  = I(r ,  n, v, t) dS cos 0 dw dvd t  , (13) 

where 0 is the angle between n and the normal to the surface dS (i.e. 
dScos0  = n . d S ) .  The dimension of I is erg cm -2 sac - I  hz -1 sr -1. The 
specific intensity provides a complete description of the unpolarized radia- 
tion field from the macroscopic point of view. 

As pointed out above, there is a close connection between the specific 
intensity and the photon distribution function, f .  The latter is defined such 
that  f ( r ,  n, v, t) dw dv is the number of photons per unit volume at location 
r and time t, with frequencies in the range (v, v + dr) ,  propagating with 
velocity c in direction n. The number of photons crossing an element dS in 
time dt is f ( c .  d~)(n • dS)(dw dr) .  The energy of those photons is the same 
expression multiplied by hv, h being the Planck constant. Comparing this to 
the definition of the specific intensity, we obtain the desired relation between 
the specific intensity and the distribution function, 

I = (chv) f . (14) 

This relation makes it easy to understand the following expressions. Anal- 
ogously as for massive particles, one defines various moments of the distribu- 
tion function - i.e. the specific intensity in this case - which have a meaning 
of the energy density, flux, and the stress tensor. 
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From the definition of the distribution function, it is clear that  the en- 
ergy density of radiation is given by (dropping an explicit indication of the 
dependence on frequency, etc.) 

= = ( 1 5 )  E 

because f is the number of photons in an elementary volume, and hu the 
energy of each; we have to integrate over all solid angles. Similarly, the energy 
flux of radiation is given by 

because c n is the vector velocity. 
The radiation stress tensor is defined by 

= f ( h u ) n n f d w  = ( l / c ) / n n l d w  . (17) P 

Finally, we mention that the photon momentum density [recall that  the mo- 
mentum of an individual photon is (hu/c)n] is given by 

G = f(h /c) n f d w  -- (1/c 2) F , (18) 

i.e., it is proportional to the radiation flux. 

2.2 A b s o r p t i o n  a n d  Emis s io n  Coeff ic ient  

The radiative transfer equation describes the changes of the radiation field 
due to its interaction with matter. To describe this interaction, one first 
introduces several phenomenological quantities: 

Absorption coefficient describes the removal of energy from the radiation 
field by matter. It is defined in such a way that an element of material, of 
cross-section dS and length ds, removes from a beam of specific intensity I 
(incident normal to dS into a solid angle dw), an amount of energy 

dE  = x(r,  n, u, t) I(r ,  n, u, t) dSds  d~ du dt . (19) 

The dimension of )~ is cm - I ,  thus 1/X has a dimension of length, and it 
measures a characteristic distance a photon can travel before it is absorbed; 
in other words, the photon mean free path. 

Emission coefficient describes the energy released by the material in the form 
of radiation. Analogously, it is defined such as an elementary volume of ma- 
terial, of cross-section dS and length ds, releases (into a solid angle dw, in 
direction n, within a frequency band du) an amount of energy 

dE  = rl(r, n, u, t) dSds  dw du dt . (20) 
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The dimension of ~ is erg cm -3 hz -1 sec -1 sr -1. 
The absorption and emission coefficients are defined per unit volume. 

Sometimes, one defines the coefficients per unit mass, which are given by 
expressions (19) and (20) divided by the mass density, p. 

The above coefficients are defined phenomenologically. To be able to write 
down actual expressions for them, we have to go to microscopic physics. In 
other words, we have to describe all contributions from microscopic processes 
that  give rise to an absorption or emission of photons with specified proper- 
ties. Detailed expressions will be considered later on (Sects. 3.1, 5.2). Here, 
we will discuss some general points: 

i) Sometimes, one distinguishes two types of absorption, a "true absorp- 
tion", and a "scattering". In the true absorption (also called "thermal absorp- 
tion") process, a photon is removed from the incident beam and is destroyed; 
while in the scattering process a photon is first removed from the beam, but 
is immediately re-emitted in a different direction and with (slightly) different 
frequency. This distinction is reflected in a notation, 

x(r ,  n,  ~,, t) = ~(r ,  n,  v, t) + c~(r, n ,  u, t) , (21) 

where the first term on the right hand side, ~, refers to the true absorption, 
while the second term, ¢, to the scattering. However, I stress that this distinc- 
tion does not really have to do much with the absorption process - X describes 
a removal of photon from the beam and does not have to care about what 
happens next. The distinction between the true absorption and scattering 
actually enters rather the proper formulation of the emission coefficient. 

ii) It is known from the quantum theory of radiation that  there are three 
types of elementary processes that give rise to an absorption or emission of 
a photon: 1) induced absorption - an absorption of a photon accompanied 
by a transition of an a tom/ ion  to a higher energy state; 2) spontaneous 
emission - an emission of a photon accompanied by a spontaneous transition 
of an a tom/ ion  to a lower energy state; and 3) stimulated emission - an 
interaction of an a tom/ ion  with a photon accompanied by an emission of 
another photon with identical properties. In the astrophysical formalism, the 
stimulated emission is usually treated as negative absorption. 

iii) In thermodynamic equilibrium, the microscopic detailed balance holds, 
and therefore the radiation energy absorbed in an elementary volume in an 
elementary frequency interval is exactly balanced by the energy emitted in the 
same volume and in the same frequency range. From the definition expressions 
for the absorption and emission coefficients, (19) and (20), it follows that  in 
the equilibrium state, X I = 77. Moreover, we know that  in thermodynamic 
equilibrium the radiation intensity is equal to the Planck function, I = B, 

where 2ha 3 1 

B ( v , T ) =  c2 e x p ( h v / k T ) - I  (22) 

We are then left with an interesting relation that  in thermodynamic equilib- 
rium, rl/X = B,  which is called Kirehhoff's law. 
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2.3 P h e n o m e n o l o g i c a l  D e r i v a t i o n  of  t h e  T rans fe r  E q u a t i o n  

Having defined the basic phenomenological coefficients which describe the 
interaction of radiation and matter, a heuristic derivation of the radiative 
transfer equation is straightforward. We express a conservation of the total 
photon energy when a radiation beam passes through an elementary volume 
of matter  of cross-section dS (perpendicular to the direction of propagation) 
and length ds (measured along the direction of propagation). Taking into 
account definitions of the specific intensity, (13), and the absorption and 
emission coefficients, (19) and (20), we obtain 

[/(r + Ar, n, v, t + At) -- I(r ,  n, v, l)] d S d w  dv dt = 

[~(r, n, v, 1) - x(r,  n, v, t ) I(r ,  n, v, 1)] ds d S d w  dv  dt , (23) 

which expresses the fact that the difference between specific intensities before 
and after passing through the elementary volume of pathlength ds is equal 
to the difference of the energy emitted and absorbed in the volume. The 
difference of intensities on the left hand side may be expressed as 

or or :or ioI  
diff I = ~sdS + ~ - d t  = \ ~ s  + c ~ ' ]  ds . (24) 

Finally, c~I/cOs may be written as n - x7, so we arrive at 

c ~ - ~ + n . V  l(r,n,v,t)=rl(r,n,v,t)-x(r,n,v,t)l(r,n,v,t ) . (25) 

This is the general form of the radiative transfer equation. Let us now consider 
two important  special cases. 

1) for a one-dimensional planar atmosphere, nz - (dz /ds )  = cos 0 - #, 
where 0 is the angle between direction of propagation of radiation, n, and the 
normal to the surface. Further, let us assume a time-independent situation, 
0 /0t  = 0, so we obtain 

dI(v ,  ~, z) 
dz - ~("' ~' z) - I(~, ~, z) x(~,  ~, z ) ,  (26) 

where the intensity of radiation is now only a function of the geometrical 
coordinate z, frequency v, and the directional cosine/J. 

2) in spherical coordinates, the derivative along the ray, O/Os is given by 
O/C~s -- ~(0/0r)  + (1 -- 1~2)/r(O/(O/A), and the radiative transfer equation in 
a spherically symmetric medium is written as 

oi(.,., ,9 i - .~ oi(., .,,9 
# 0r + - -  r a# 

--- rl(v , #, r) - l(v, ,u, r) X(v,/.z, v) . (27) 
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2.4 Op t i ca l  D e p t h  a n d  t h e  Source  F u n c t i o n  

Let us start with a simple 1-D transfer equation, written as 

d L  
~ - a - ~  = ~v - x v ~  , (2S)  

where we drop an explicit indication of the dependence of I, 7, and X on 
the geometrical distance z and angle #, and write, as is customary in the 
astrophysical literature, the frequency u as a subscript. We divide the transfer 
equation by Xv, and obtain a very simple and advantageous form of the 
transfer equation, 

d L  
# ~ = I v - S v  , (29) 

where the elementary optical depth is defined by 

dr~ = - X ~  dz , (30) 

and the source function is defined by 

Sv - 7Iv (31) 
Xv 

The absorption and emission coefficient are local quantities, therefore the 
definition of the source function, (31), applies for all geometries. The optical 
depth depends on the geometry; in case of a 3-D transfer, the most natural 
definition is the optical depth along the ray, defined by 

d r  = x(r,  n, v) ds , (32) 

where ds is the elementary pathlength in the direction n. In the case of 
a plane-parallel atmosphere, the relation between the optical depth in the 
direction # (which we denote here as r,~), and the "normal-direction" rv 
defined by (30), is 

d r ,  v = drv//~ . (33) 

What  is the physical meaning of the optical depth and of the source func- 
tion? The meaning of the optical depth is straightforward. In the absence 
of emissions, the transfer equation is simply d I /d r  = I, and the solution 
is I(r) = I(r  + At)exp( - -Ar) ,  i.e. the optical depth is the e-folding dis- 
tance for attenuation of the specific intensity due to absorption. In other 
words, the probability that a photon will travel an optical distance r is sim- 
ply p(r) = exp( - r ) .  Since the absorption coefficient (e.g. in spectral lines) 
may be a sharply varying function of frequency, the (monochromatic) optical 
depth may also vary significantly with frequency. Sometimes one defines var- 
ious frequency-independent optical depths, like those corresponding to the 
averaged absorption coefficient, either over the whole spectrum (a typical ex- 
ample being the Rosseland optical depth - see Sect. 2.8), or over a spectral 
line (see Sect. 3.1). 
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The meaning of the source function can also be easily understood. Let us 
write the number of photons emitted in an elementary volume (defined by an 
elementary area dS and an elementary path ds), to all directions. From the 
definition of the emission coefficient it follows that (assuming an isotropic 
emission for simplicity) Nero = qds (4zr/h~)dudtdS, where the factor 4~r 
comes from an integration over all solid angles, and h~ transforms energy 
(from the original definition of the emission coefficient) to the number of 
photons. Using the definition of the optical depth and the source function, 
we may rewrite the factor ~ds as ~ds = (71/x)xds = S(r)dr.  Consequently, 
the number of emitted photons is 

Nem --- S(r)dT" 4~r dv dt dS . (34) 

In other words, the source function is proportional to the number of photons 
emitted per unit optical depth interval. 

For completeness, we mention that the number of photons absorbed per 
unit optical depth interval (from all solid angles) is analogously given by 

Nabs = J ( r )d r  ~ dv dt dS , (35) 

which directly follows from (19); J being the mean intensity of radiation, 
defined by (48). 

2.5 E l emen ta ry  Solut ions 

In this section, we consider the simplest solutions of the 1-D plane-parallel 
transfer equation. For notational simplicity, we drop subscript ~ indicating 
the frequency dependence. 

a) No absorption, no emission, i.e. X = U = 0. The transfer equation reads 
d l / d z  = O, which has a trivial solution 

I = const . (36) 

This expresses the obvious fact that in the absence of any interaction with 
the medium, the radiation intensity remains constant. 

b) No absorption, only emission, i.e. X = 0, but ~ > 0. The solution is 
simply 

f i (z ,  = s(0, + (37) 

This equation is often used for describing an outcoming radiation from an 
optically thin radiating slab, like for instance a forbidden line radiation from 
planetary nebulae, or a radiation from the solar transition region and/or 
corona. 
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c) No emission, only absorption, i.e. 77 = 0, X > 0. The transfer equation 
now reads # d I / d r  = [, and the solution is simply 

I(O, #) = I(r, I~) e x p ( - r l v )  . (38) 

d) Absorption and emission. We will now write a general formal solution of 
the transfer equation, i.e. for the case where both, absorption and emission, 
coefficients are different from zero, X > 0, I/ > 0. The solution is called 
"formal" because it is assumed here that  both X and r/are specified functions 
of position and frequency. As we shall see later on, both coefficients may 
depend on the radiation field, so that  in actual problems they may not be 
given a priori, without previously solving the general transfer problem. The 
formal solution reads 

fT T2 I(rl, #) = I(r2, #) exp[-(r2 - r,)/#] + S(t) exp[-(t - rl)/~] dt/~ . (39) 
1 

e) Semi-infinite atmosphere. A special case of the formal solution (39) for 
emergent radiation (i.e. vl = 0) from a semi-infinite atmosphere (v2 = ~ )  
reads 

I(0, #) = S(t) e x p ( - t / # )  dt//~ . (40) 

This equation shows that  the specific intensity in a semi-infinite atmosphere 
is in fact a Laplace transform of the source function. 

f) Semi-infinite atmosphere with a linear source function. Another special 
case of the general formal solution (39) is a emergent intensity from a semi- 
infinite atmosphere, with a source function being a linear function of optical 
depth, S(r)  = a + br. It is given by 

I(0, , )  = a + b ,  = = , ) .  (4i) 

This important  expression is called the Eddington-Barbier relation. It shows 
that  the emergent intensity, for instance in the normal direction (# = 1) is 
given by the value of the source function at the optical depth of unity. The 
values of emergent intensity for all angles # between 0 and 1 then map the 
values of the source function between optical depths 0 and 1. Although in 
reality the source function does not have to be a linear function of optical 
depth, it can usually be well approximated by it in the vicinity of r = 1. 
Consequently, the Eddington-Barbier relation, (41), usually provides a good 
estimate of the emergent intensity. 

g) Finite homogeneous slab. Finally, an expression for an emergent radia- 
tion (rl = 0) from a finite (r2 = T < cx~) and homogeneous slab [i.e. S(t) = S 
is constant], in the normal direction (p = 1), reads 

I (0 ,1)  = s .  (1 - e - T )  (42) 
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In the special case T >> 1, (42) becomes I(0, 1) = S, while for T << 1, we 
obtain I(0, 1) = S • T. Both limiting expressions have a simple physical ex- 
planation. As we have shown above, the source function expresses a number 
of photons (or radiative energy) emitted per unit optical depth. In the opti- 
cally thin case (T << 1), there is little absorption, so practically all created 
photons escape from the medium. Since the actual optical depth is T, the 
total emergent intensity is S-T. In the optical thick case, we may roughly say 
that  the photons created deeper than v = 1 are very likely absorbed, so the 
only photons which contribute to the emergent intensity are those emitted 
at optical depths r _< 1. Consequently, the emergent intensity is S • 1, i.e. S, 
regardless of the actual optical thickness of the slab. 

2.6 M o m e n t s  o f  t h e  T rans fe r  E q u a t i o n  

Analogously to the case of massive particles, we may define various moments 
of the photon distribution function, i.e. the specific intensity. By appropri- 
ately integrating the kinetic (i.e. transfer) equation we obtain relations be- 
tween these moments. As was discussed in Sect. 2.1, the first three moments 
are the photon energy density, radiation flux, and the radiation stress tensor. 
Written synoptically, (see, e.g the textbook by Shu 1991), we may write 

F .  = in I~dw . (43) 

cP~ n n  

Consequently, the moment equations are obtained by multiplying the transfer 
equation (25) by 1, n, etc., and integrating over all solid angles. The first two 
moment equations read 

Oz~ 
+ V ' F ~ = ~ ? ~ - x v c E ~  , (44) 

Ot 

10F~, 
c Ot + cV-P~ = - x ~ F ~  , (45) 

Both these equations have the general structure of the moment equation of 
the kinetic equation, namely 

O/Ot(density of quantity) + (gradient of its flux) = (sources - sinks) . (46) 

In the astrophysical literature, one usually introduces moments as angle- 
averaged, rather than angle-integrated quantities. The first moments of the 
radiation intensity are usually denoted as J,  H, K.  We may synoptically 
write 
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In a plane-parallel approximation, all the moments are scalar quantities, 
and are given by 

= ( 4 S )  

= ( 4 9 )  H`" 1 

I4,, = ~ 1 #2/~(#)dp , (50) 

and the moment equations are written as 

dH`" 
= ]`" - S`" , (51) 

dr`" 

and 
dK`" 

= H`" . ( 5 2 )  
dr,, 

The system of moment equations is not closed, i.e. the equation for n-th 
moment contains the (n+ 1)-th moment, etc. It is therefore necessary to come 
up with some kind of closure relation. In the stellar atmospheres theory, one 
defines the so-called Eddington factor, fK, by 

f K  - -  I<.`'/J`" . (53) 

It is clear from the definition of moments that  in the case of isotropic radia- 
tion, I`'(#) = I`" being independent of angle, the Eddington factor fK : 1/3. 
Assuming the Eddington factor to be specified, one may combine the two 
moment equations (51) and (52) together, 

d~(f~J~) 
- J v  - S ~  . ( 5 4 )  

This equation is very useful. It effectively eliminates one independent vari- 
able, the angle /~, from the problem. Numerically, it replaces the original 
transfer equation, which is a first-order linear differential equation for the 
specific intensity I`'u, by a second-order but still linear differential equation 
for the mean intensity, J,~. However, its simplicity is illusory. It cannot be 
used alone, even if the source function is given, since in general the Ed- 
dington factor is unknown unless the full solution of the transfer equation is 
known. However, this form of the transfer equation is very useful in certain 
numerical methods, as we will discuss later on. It should be realized that  it 
can be used to advantage only in i t e r a t i v e  methods; in which we use current 
values of J and K to determine the current Eddington factor fK, and keep 
this factor fixed during the subsequent iteration step. 
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2.7 L a m b d a  O p e r a t o r  

Let us first write down the general formal solution of the radiative trans- 
fer equation for a semi-infinite plane-parallel atmosphere, with no incoming 
radiation at the surface (r = 0), 

jfT °° 
I.(7-., #) = S~ (t)e -(t-r~)/u d t / # ,  for # > 0 , (55) 

v 

f0 Tv Iv(T.,  p) = S~(t)e -(~È-t)/(-u) d t / ( - # ) ,  for # < 0 . (56) 

Recall that  from the definition of the directional cosine p follows that  posi- 
tire values of/~ correspond to outward directions, while negative values of # 
correspond to inward directions. The mean intensity of radiation is obtained 
by integrating (55) and (56) over/~, viz. 

J . ( v . )  = ~ S . ( t ) E ~ ( l t -  r . l ) d t  , (57) 

where E1 is the first exponential integral. The general exponential integral is 
defined by 

jr1 °° e-xt E~(z)  - t----~dt , (58) 

The mean intensity may be synoptically expressed as an action of an 
operator, A, on the source function, 

J~(r.) = A~ [S(t)] , (59) 

where the A-operator is defined by 

Ar[f( t)]  = "~ El( I t  - r]) f ( t )  dt , (60) 

The behavior of the kernel functions corresponding to the specific inten- 
sity, (55), which is a simple exponential, and for the mean intensity, which 
is the first exponential integral, (57), is displayed in Fig. 1. The width of the 
kernel decreases with decreasing p, which is easily understood by realizing 
that a unit optical distance for a photon traveling with a certain angle with 
respect to the normal to the surface, it, corresponds to a larger optical dis- 
tance than for one traveling in the normal direction, because the distance 
is proportional to 1/#. Similarly, the kernel for the specific intensity propa- 
gating in the normal direction (# = 1) is significantly wider than the kernel 
for the mean intensity. This is simply because the mean intensity contains 
contribution from all angles, i.e. the corresponding kernel is an average over 
all it-dependent specific intensity kernels. 
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Fig.  1. Kernel functions for the specific intensity at various angles (thin lines 
for p = 1, 0.8, 0.6, 0.4, and 0.2), and for the mean intensity of radiation (thick 
line) 

For practical purposes, (57) or (59) have to be replaced by a quadrature 
sum. Equation (59) can thus be written in the discretized form as 

D 

Ja = ~ Add, S,~, , (61) 
d~_--I 

where d denotes the depth index (we dropped the frequency index v). The 
A-operator can thus be thought of as A-matrix, and the mean intensity as 
well as the source function at all depths as column vectors. 

What  is the meaning of the A-matrix? Let us take, quite formally, all 
elements of the source function vector to be zero except the i-th element 
which is taken to be 1, Sd = 5di. Then i J1) All I!l  A1, J2 = A21 A22 . . .  A2D A~ 

JD \ A o l  AD2 . . .  A D D /  \ A D i  

(62) 
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In other words, the i-th column of the A matrix is a solution of the transfer 
equation with the source function given as a unit pulse function. Physically, 
the i-th column of A therefore describes how the pulse which originated at 
the i-th depth point spreads over all depths. 

2.8 Diffusion A p p r o x i m a t i o n  

Deep in the atmosphere, the source function approaches the Planck function, 
Su -+ By, because virtually no photons escape, and thus the medium ap- 
proaches the thermal equilibrium. Let us choose a reference optical depth, 
v~ >> 1, and let us expand the source function for t~ > n, by a Taylor 
expansion, 

d Bv - K-" 
(63) 

Z_u d,~ n[ ' 
n = O  

Substituting this expression to the formal solution, (55) and (56), we obtain 

= B . (w)  + 
. d" B.  dB~ 2 d2Bv 

l.(t.,/~)= /~ dr  2 #-d--~ + #  ~ +  . . . .  (64) 
n = 0  

By substituting this expression into definition equations for the moments, we 
obtain 

1 d2Bv 
Ju(~-u) = B.(n,)  + g d--~, 2 + . . .  , (65) 

1 dB, 
Hu(ru) = ~ dr,, + ' "  ' (66) 

K.(r~) = 1 gl d2B. 
~B.(v . )  + d--~F + " "  " (67) 

These equations illustrate several features of the behavior of the radiation 
field at large depths. First, the mean intensity approaches the Planck func- 
tion. Second, the radiation field is nearly isotropic, and the Eddington factor 
fK = Kv/J,~ approaches 1/3. Finally, the monochromatic flux is given as a 
derivative of the Planck function with respect to the optical depth. Since the 
Planck function is only a function of temperature, we may express the flux 
by means of the temperature gradient, 

1 dBv 1 1 1 1 dB.  dT 
H . - -  3 d-~u - 3X~ d ~ -  3X. dT dz (68) 

Thus, at great depths the transfer problem reduces to this single equation. 
The name diffusion approximation comes from the similarity of this equation 
to other, material, diffusion equations, which are typically of the form 

flux = (diffusion coefficient) x (gradient of the relevant quantity) . (69) 
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We may thus think of the term ( -1 /3 ) (1 /X~) (dB~ /dT)  as a radiative diffu- 
sion coefficient; or, because of a similarity of (68) to the heat conductivity 
equation, as radiative conductivity. 

By integrating over all frequencies we obtain for the total radiation flux 
in the diffusion approximation 

H = - XR d T ]  dz 
(zo) 

where the averaged opacity is defined by 

1 dB f0 c° 1 dB~ 
- L 

(71) 

which is the well-known Rosseland mean opacity. One may define many other 
averaged (mean) opacities by simpler expressions, but we see why the Rosse- 
land opacity is defined by this seemingly strange expression - it yields the 
exact total radiation flux at large depths. Since the temperature in the atmo- 
sphere is in fact determined by the condition imposed on the total radiation 
flux, the Rosseland mean opacity yields the correct temperature structure 
deep in the atmosphere. It is also clear why the Rossetand opacity is the 
most appropriate one for the use in the stellar interior theory (de Greve, 
this Volume). Notice also that the integrand in the definition of Rosseland 
opacity contains 1/X, i.e. the contribution to the integral is largest for the 
lowest monochromatic opacities. Indeed, for those frequencies the medium 
is most transparent, and therefore the monochromatic flux is largest. This 
again shows that the Rosseland mean opacity is the most appropriate one for 
describing the total radiation flux. 

3 R a d i a t i v e  T r a n s f e r  w i t h  C o n s t r a i n t s ;  

E s c a p e  P r o b a b i l i t y  

3.1 Two-Level  A t o m  

The simplest situation where we have a coupling of the radiative transfer 
equation and the statistical equilibrium equation is an idealized case of a 
two-level atom. Real atoms contain many energy levels, so that this approxi- 
mation may seem at first sight to be grossly inadequate. However it actually 
provides a surprisingly good description of line formation in many cases of in- 
terest. And, more importantly, the case of the two-level atom has a significant 
pedagogical value because it provides an explanation of many elementary pro- 
cesses that are crucial to understand NLTE line formation. In other words, 
a good physical understanding of line formation in a two-level atom is a pre- 
requisite to understanding of more complicated cases. Therefore, this model 
will be discussed here in certain detail. 
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Fig.  2. Schematic representation of microscopic processes in a two-level atom 

Let us first derive the expression for the source function. Figure 2 shows 
schematically the energy levels and all the elementary processes populating 
and depopulating the levels. The absorption and emission coefficients are 
given by 

hvo 
~v = 47r (n1B12 - n2B21) ¢(u) , (72) 

and 
hlJ  o 

~ = ~ n~A21¢(u) , (73) 

where u0 is the line-center frequency, and B12, B21 and A~I are the Einstein 
coefficients for absorption, stimulated emission, and spontaneous emission, 
respectively, for the radiative transitions between levels 1 and 2; nl  and n2 
are populations (occupation numbers) of levels i and 2, respectively, and ¢(v) 
is the absorption profile. The latter expresses the probability density that  if 
a photon is absorbed (emitted) in a line 1-2, it has a frequency in the range 
(v, v+dv) .  The profile coefficient is thus normalized to unity, f0 °° ¢(u)dv = 1. 
We assume that there is no other absorption or emission mechanism present. 

It is advantageous to introduce a dimensionless frequency, x, by 

v - v0 (74) 
x - -  A~"-""~ ' 

APD is the Doppler width, given by A~D : (Yo/C)Vth, with the thermal 
velocity Vth ---- (2kT/rn)W2, m being the mass of the radiating atom. In the 
case of a pure Doppler profile (i.e. no intrinsic broadening of the spectral line; 
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the only broadening is due to the thermal motion of radiators), the absorption 
profile is given by 

¢(x) = exp(-z2) /vf~ . (75) 

In a more general case, where there is an intrinsic broadening of lines de- 
scribed by a Lorentz profile in the atomic rest frame (the most common 
types of intrinsic broadening being the natural, Stark, and Van der Waals 
broadening - see Mihalas 1978, or monograph by Griem 1974), the profile 
function is given by the Voigt function, 

= H(a, = a S_ 
e - y  2 

oo - + a '  d y .  (76) 

The Voigt function is a convolution of the Doppler profile (i.e. the thermal 
motions) and the Lorentz profile (intrinsic broadening). The parameter a is 
a damping parameter expressed in units of Doppler width, a = T'/(4~rA~,D) , 
where _P is the atomic damping parameter. For instance, for the natural 
broadening of a line originating in a two-level atom, T' = A21. 

Opacity in the line may be written as 

~ = ~ ¢(x) , (77) 

and analogously for %. The optical depth corresponding to the frequency- 
independent opacity, to, is called the frequency-averaged opacity in the line, 
and is often used in line transfer studies. Notice that this opacity is not equal 
to the line center opacity, ~¢(0), but is related to it by, for instance for the 
Doppler profile, ~(0) = ~/v/~. 

A remark is in order. We use the same profile coefficient for absorption, 
stimulated emission, and spontaneous emission - all of them are given through 
¢(u). This is an approximation called complete redistribution (CRD), which 
holds if an emitted photon is completely uncorrelated to a previously ab- 
sorbed photon. In other words, the absorbed photon is re-emitted, i.e. redis- 
tributed, completely, without any memory of the frequency at which it was 
previously absorbed. A more exact description, taking into account photon 
correlations, is called the partial redistribution (PRD) approach. A discussion 
of this approach is beyond the scope of the present lecture; moreover, PRD 
effects are important only for certain lines (e.g. strong resonance lines, like 
hydrogen L~, Mg II h and k lines, etc.), and under certain conditions (rather 
low density). The interested reader is referred to several reviews (e.g. Mihalas 
1978; Hubeny 1985). 

The source function follows from (72) and (73), 

S~ - -  r]''Lv = n2A21  - S L (78)  

~ r~lB12 -- n 2 8 2 1  

which is independent of frequency, thanks to the approximation of CRD. 
Next step is to determine the ratio n2/nl which enters the source function. 

This is obtained from the statistical equilibrium equation, which states that 
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the number of transitions into the state 1 (or 2) is equal to the number of 
transitions out of state 1 (2). This equation reads 

nl (R12 ÷ C12) - n2 (//21 ÷ C21) , (79) 

where R's are the radiative rates, and C's the collisional rates. The radiative 
rates are given by 

/? = B12 & ¢ ( . )  d .  = BI J, ( so )  

R21 = A21 ÷ B21 Jv¢(u) du _= A21 + B21] , (81) 

where the quantity J is called the frequency-averaged mean intensity of radia- 
tion. We will view here collisional rates as known functions of electron density 
(since collisions with electrons are usually most efficient) and temperature; 
for details, refer e.g. to Mihalas (1978). 

Using the well-known relations between the Einstein coefficients, B21/B12 = 
gl/g2, and A21/B21 = 2hv~/c 2, and the relation between the collisional rates, 
C21/Cz~ = (nl/n2)* = (gl/g2)exp(huo/kT) (where (nl/n2)* denotes the 
LTE population ratio), we obtain after some algebra 

S : ( 1 -  e)i + eB~o , (82) 

where 
c' C21(1 - -  e -hv/kT) 

- -  • = (83) e =  l + e '  ' A2z 

In the typical case, h u / k T  >> 1 (since typical resonance lines, for which the 
two-level approximation is adequate, are formed in the UV region where the 
frequency is large), and therefore e may be expressed simply as 

C21 
e ~ C21+ A21 ' (84) 

which shows that  ¢ may be interpreted as a destruction probability, i.e. the 
probability that an absorbed photon is destroyed by a collisional de-excitation 
process (C21) rather than being re-emitted (A21). 

Equation (82) is the fundamental equation of the problem. The first term 
on the right hand side represents the photons in the line created by scattering, 
i.e. by the emission following a previous absorption of a photon, while the 
second term represents the thermal creation of a photon, i.e. an emission 
following a previous collisional excitation. 

Mathematically, the source function, (82), is still a linear function of the 
mean intensities. This is the case only for a two-level atom; in a general 
multi-level atom the source function contains non-linear terms in the radi- 
ation intensity. The two-level atom is thus an interesting pedagogical case: 
it contains a large-scale coupling of the radiation field and matter,  yet the 
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Fig.  3. Source function for a two-level atom in a constant-property 
semi-infinite atmosphere, with B -- 1 (which only states that  the source 
function is expressed in units of B), and for various values of the destruction 
parameter e; e = 10 -2, 10 -4, 10 -s,  10 -s  

coupling, although being non-local, is still linear, and therefore much easier 
to handle (and understand!) than in the general case. 

By applying any of the numerical methods which are discussed in the next 
chapter, one can easily obtain a solution of the two-level atom problem. Let us 
take a standard example of line formation in a homogeneous semi-infinite slab. 
The homogeneity implies that all material properties (temperature, density, 
etc.) are independent of depth. In the context of the source function, (82), 
this means that  e, B, and ¢(z) are depth-independent. The solution, first 
obtained by Avrett and Hummer (1965), is displayed in Fig. 3 for several 
values of the destruction parameter e. It shows two interesting features: 

i) The surface value of the source function is equal to v/e B. Actually, this 
is a rather robust result, which is valid regardless of the type of the profile 
coefficient. Several rigorous mathematical proofs exist (see, e.g., monograph 
by Ivanov 1973); a physical explanation of this result was given by Hubeny 
(1987). 

ii) The source function starts to deviate from the Planck function at a 
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certain depth; below this point it is essentially equal to B. This depth is called 
the t hermal i za t ion  depth, and is traditionally denoted as A. We use here the 
notation Tth to avoid confusion with the A-operator. Figure 3 indicates that  
for a Doppler profile, Tth ,-~ 1/£. This indeed agrees with a more rigorous 
analytical study (Avrett and Hummer 1965; Ivanov 1973). These analyses 
moreover show that for a Voigt profile the thermalization depth is even larger, 
rth ~. a / e  2 • 

Why does the source function decrease towards the surface? We know 
that  in the case of a homogeneous medium the departures from LTE arise 
only because of the presence of the boundary through which the photons 
escape. Before the line photons "feel" the presence of the boundary (i.e. in 
large enough optical depths), all microscopic processes depicted on Fig. 2 are 
in detailed balance, so the LTE approximation holds. However, as soon as 
the photons start to feel the boundary, i.e. they start to escape from the 
medium through the boundary, the photo-excitations are no longer balanced 
by radiative de-excitations. Since the absorption rate depends on the number 
of photons present, while the spontaneous emission rate does not (we neglect 
for simplicity the stimulated emission), the number of radiative excitations 
drops below the number of de-excitations as soon as photons start to escape. 
The lower level will consequently start to be overpopulated with respect to 
LTE, while the upper level will be underpopulated. Since the source function 
measures the number of photons created per unit optical depth, and since 
the number of created photons is proportional to the population of the upper 
level (because this is the level from which the atomic transition accompanied 
by the photon emission occur), the source function has to drop below the 
Planck function. 

Having understood that,  we now face an intriguing question: Given that  
departures from LTE arise because of the presence of the boundary, how 
come that  the thermalization depth, i.e. the depth where the departures of 
the source function from the Planck function set in, is so large? Recall that  
the optical depth r in Fig. 3 is the frequency-averaged optical depth in the 
line. One might then expect that the presence of the boundary is felt by an 
"average" photon around 7" ~ 1, while the actual depth where photons feel 
the boundary is much larger (e.g. r ~ 106 for a typical value of e = 10-6)! 

The explanation hinges on the fact that  an "average" photon is not the 
one which is responsible for the transport and escape of photons in a line. 
Let us follow a photon trajectory from the point of its thermal creation. Let 
us assume that the photon was created at a large optical distance from the 

boundary.  The photon is created with a large probability of having the fre- 
quency near the line center, because this probability is given by the absorption 
profile, ¢(z), which is a sharply peaked function of frequency around x --= 0. 
Consequently, the monochromatic optical depth is large, and so the physical 
distance it travels before the next absorption (i.e. the geometrical distance 
corresponding to r~ ~ 1) is quite small. The same situation very likely oc- 
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Fig. 4. Schematic representation of a trajectory of a photon in a gas of 
two-level atoms 

curs after the next scattering. We are then left with the following picture 
of photon trajectory in the two-level atom case with complete redistribution 
(the trajectory for the case of partial redistribution is quite different!): The 
photon makes many consecutive scatterings with the frequency staying close 
to the line center; during these scatterings the photon practically does not 
move at all in the physical space. However, in a very infrequent event when 
it is re-emitted in the wing, the opacity it sees drops suddenly by orders of 
magnitude, and therefore it can travel a very large distance. The situation is 
depicted in Fig. 4. We see that the transfer in the core is inefficient; what re- 
ally accomplishes the transfer are infrequent excursions of the photon to the 
line wings. This makes the photon transfer quite different from the massive 
particle transport: The particle mean free path remains of the same order 
of magnitude when a particle diffuses through the physical space, while the 
photon mean free path can change enormously. It is now clear why the ther- 
malization depth is so large: it is determined by line-wing photons, whose 
mean free path is much larger that that of the core photons, which in turn 
define the mean optical depth v. 

It is also clear why the thermalization depth depends on the destruction 
probability e. The total number of consecutive scatterings is of the order of 
l/e; if the photon does not escape before it experiences 1/e scatterings, it is 
destroyed by collisional processes, and therefore does not feel the presence of 
the boundary. These considerations are made more quantitative by the escape 
probability approach, which we shall consider in detail in the next subsection. 
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Finally, I mention that the source function for a line in a general multi- 
level atom can always be written in a form analogous to (82), viz. (see, e.g., 
Mihalas 1978) 

S L ----- (1 - q j ) ~ j  + q,j , (85) 

where eij and T]i j a r e  the generalized destruction and creation terms, re- 
spectively; subscripts ij indicate that the quantities are appropriate for the 
transition i -4 j .  This approach is called the equivalent-two-level-atom (ETA) 
approach. The source function is formally a linear function of the mean inten- 
sity. However, it should be realized that  the destruction and creation terms 
Qj and ~ij contain contributions from the transition rates in all transitions 
in and out of states i and j,  which depend on the radiation field. Therefore, 
despite apparent linearity of equation (85), one has to solve a general multi- 
level atom problem by an iteration process. The ETA approach may or may 
not converge in actual situations, and is not recommended as a robust and 
universal method. Nevertheless, it may be useful in some applications (see, 
for instance, several papers in Kalkofen 1984 and 1987; or Castor et al. 1992). 

3.2 Escape  P r o b a b i l i t y  

Let us first consider a probability that  a photon with frequency u and prop- 
agating in the direction specified by angle/~ escapes in a single flight. This 
probability is given by 

p ~ ,  = e - ~ "  , ( 8 6 )  

which follows from the very physical meaning of optical depth (see Sect. 2.4). 
The angle-averaged escape probability is given by 

i fo t i p~(~)  = ~ e - ~ / ' d ,  = ~ E ~ ( ~ )  , (87) 

where the integration only extends for angles p _> 0, since photons moving in 
the inward direction (# < 0) cannot escape. Finally, the angle- and frequency- 
averaged escape probability for photons in one line is given by (adopting the 
z-notation, and writing x as a subscript) 

// pe(v) = ¢~p~(r~) dx = ~ ¢~E2 (r ¢~) dz . (88) 
o o  o o  

Notice that  at the surface, pe(0) = 1/2, because a photon is either emitted 
in the outward direction, in which case it certainly escapes, or in the inward 
direction, in which case it does not escape (assuming an isotropic emission). 

We may now quantify the considerations given in the previous subsection. 
We introduce the photon destruction probability by 

Pd = e , (89) 
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and we have the photon escape probability, Pe, defined above. Now, ifpe << Pd, 
photons are likely thermalized before- escaping from the medium. In other 
words, the line photons do not feel the presence of the boundary, and therefore 
S ~ B. On the other hand, if pe >> P,i, photons likely escape before being 
thermalized, i.e. destroyed by a collisional process. It is therefore natural to 
define the thermalization depth Vth, a.~ 

p,(rth) = Pd , (90) 

which indeed gives, by substituting the Doppler profile in (88), the expression 
rth ~ 1/e. 

The escape probability considerations are actually much more powerful 
than just to explain the value of thermalization depth. One may in fact con- 
struct approximate expressions for thc source function as a function of depth. 
To demonstrate this, let us consider the following simple model: We know that  
] measures the number of photons absorbed in a line per unit optical depth 
interval [which may be verified by integrating (35) over frequencies]. If we 
are far from the surface, all the photons emitted per unit optical distance, 
S(r) dr, either escape from the medium by a single flight (with a probability 
Pe), or are re-absorbed, more or less on the spot, with probability 1-Pe.  This 
suggests that  the number of photons absorbed at 7", i.e. J(v),  should be given 
by 

J(~) = s ( ~ ) ( t  - p , )  , (91) 

which gives us the desired approximate relation between the averaged mean 
intensity of radiation and the source fimction, without actually solving the 
transfer equation! 

A very interesting point is that we can arrive, purely mathematically, to 
the same equation if we start with the integral expression (116) (see Sect. 
4.2), and do the following trick: Since the kernel function Kl(t) varies much 
more rapidly than S(t), we may assume that the source function does not 
vary over the range where the kernel function varies appreciably. In other 
words, we may remove S(t) from the integral in (116), and put S(t) = S(r). 
One may easily verify that  by integrating the kernel function Kt over r one 
obtains (91) with pe given by (88). 

Substituting (91) into the expression for the source function, (82), we 
obtain the following expression for the source function, 

( 

S(r) - B (92) 
c + ( l - e ) p o  ' 

which is traditionally called the first-o~ler escape probability appro~mation. 
It describes very well the behavior of the source function at depths, but it 
fails to reproduce the vq-law, since it yields for the source function at the 
surface S(0) = 2~/{i + e) B, which may be quite different from v~B.  The 
reason for this can be easily understood: any transfer of photons is neglected 
here, and the problem is reduced to just two mechanisms - a photon either 
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escapes in a single direct flight, or is thermalized. This so-called "dichoto- 
mous" model works well deep in the atmosphere, but fails in the outer layers 
of the atmosphere, where the transfer of photons is important.  

Without  going to any more details, I just mention that the so-called 
second-order escape probability formalism, which takes into account some as- 
pects of the photon transport,  was developed (for an illuminating discussion, 
see an excellent review by Rybicki, 1984). The resulting expression for the 
source function in a homogeneous atmosphere is 

S( r )=  c + 2 ( f - e ) p e ]  B , (93) 

which behaves very similarly to the first-order approximation at depths, but 
now yields the correct expression for the source function at the surface, S(0) = 

vqB- 
Concluding, the escape probability approach is very useful and very pow- 

erful, because it is able to provide simple approximate relations between the 
source function and the mean intensity of radiation, based on simple phys- 
ical arguments. It can therefore be used in cases where detailed numerical 
solutions are either too complicated and time consuming (like in the case of 
radiation hydrodynamic simulations, where the radiative transfer equation 
is solved in a huge number of time steps), or where a high accuracy of pre- 
dicted emergent radiation is not required. However, one should always keep 
in mind that  the escape probability methods are inherently approzimate, and 
therefore one should be always aware of their potential limitations and in- 
accuracies. Finally, I stress that  these methods were discussed here partly 
because of the above reasons, and partly because of their intimate relation to 
a class of modern numerical methods, called Accelerated Lambda Iteration 
(ALI) methods, which will be discussed in the next section. 

4 N u m e r i c a l  M e t h o d s  

There are several types of numerical method, depending on the degree of 
complexity of the problem at hand. In this section, we will consider numerical 
methods for treating three basic problems, ordered by increasing complexity, 
i) a formal solution of the radiative transfer equation - where the source 
function is specified; ii) a solution of linear line formation problems - the 
source function is a linear function of radiation intensity; and iii) a solution 
of general non-linear problems. 

4.1 F o r m a l  S o l u t i o n  o f  t h e  T r a n s f e r  E q u a t i o n  

By the term formal solution we understand a solution of the transfer equation 
if the source function is fully specified. We have already shown the formal 
solution of the transfer equation, given by (39) for the general case; or by 



30 I. Hubeny 

(55) and (56) for a semi-infinite atmosphere. The related expression for the 
mean intensity is (57). In practice, we may replace the integral over optical 
depth by a quadrature sum, and calculate the radiation intensity by a simple 
summation. 

Why, then, would we need to consider other numerical methods for this 
apparently trivial problem? The basic point is that the simple numerical 
quadrature is extremely inefficient from the point of view of computer time. 
This is because the kernel functions contain exponentials, which are very 
costly to compute. As we will see later on, the speed of modern numerical 
methods which solve a general coupled problem is in fact determined by the 
speed with which the individual formal solutions are accomplished. Therefore, 
we have to seek as efficient numerical schemes for performing a formal solution 
as possible. 

There are essentially two classes of methods, namely those based on 

1. the first-order form of the transfer equation; or 
2. the second-order form of the transfer equation. The second-order method 

is usually called the Feautrier method, in honor of its originator (Feautrier 
1964). 

F i r s t -o rde r  m e t h o d s .  They were not used very much during the last two 
decades. However, they were revived recently by an ingenious adaptation of 
the Discontinuous Finite Element (DFE) method by Castor et al. (1992). 
This scheme now appears to be an extremely advantageous method, and will 
very likely be used more and more in the stellar atmosphere numerical work. 
I will present only a brief outline here; the interested reader is referred to the 
original paper. 

Let us assume a given frequency u and angle #. Let us denote r the 
monochromatic optical depth at frequency u, along the ray specified by angle 
#. In the following, we drop an explicit indication of frequency and angle 
variables. The intensity of radiation in the optical depth interval between 
two discretized depth points, (re, re+l), is assumed to be given as a linear 
function of optical depth. 

l ( r )  = I + re+l.~d-- r + I~.+1 rare-- re (94) 

To avoid confusion, I stress that we deal with the intensity in one direction 

only; the notation I + and I -  does not mean intensities in opposite directions, 
as it is usually used in the radiative transfer theory. 

If I~" = I +, the linear representation of intensity, (94), is a continuous 
function of frequency. However, the related numerical method would be quite 
inaccurate. The essence of the DFE method is to allow for step discontinuit ies 

at points re, i.e. we consider generally I~" ¢ I +. Substituting (94) into the 
transfer equation (29), and performing analytic manipulations described in 
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Castor et al. (1992), one obtains final linear relations for the quantities I + 
and I - ,  viz. 

= sd - ~ 2 ,  (95) Ard 
and 

/2+1 - 
,Srd -- S~+1 - I~+ 1 • (96) 

By eliminating [+ we obtain a simple linear recurrence relation for I~', 

( ~  + 2 ~ d  + 2)I2+1 - 212 = ~ d S d  + n ~ ( n ~ d  + 1)Sd+l , (97) 

and I + follows from 

( A ~  + 2 ~  + 2 ) I  + = 2 ( A ~  + 1) I2  + ~ d ( ~  + 1)S~ -- A-dSd+~ . (gs) 

Finally, the resulting specific intensity at r~ is given as a linear combination 
of the "discontinuous" intensities I d and I +, 

Id  = I ~  A'rd + I +  A r d _ l  (99) 
A T  d -~ ATd_ 1 

S e c o n d - o r d e r ,  or  F e a u t r i e r  m e t h o d .  The basis of the method is to in- 
troduce the symmetric and antisymmetric averages of the specific intensity, 

j~, _ l [ i (+#,  v) + i ( _ # ,  v)] , ( 0<_#_<1)  , (100) 

h ~  = ~1 F ( + ' ,  ~) - I ( - ~ ,  ~)], (0 _< ~ _< 1) . (101) 

Considering separately the transfer equation (29) for positive and negative 
#'s, and adding and subtracting these equations we obtain, 

# ( d h u ~ / d r ~ )  = j~,u - Sv  , (102) 

# ( d j , ~ , / d r ~ )  = h , ~  . (103) 

Using (103) to eliminate h~,, from (102), we obtain 

#2 d2J,~ 
d r  2 - j~,~,-S~ . (104) 

This equation is very similar to the moment equation (54); also the quantity 
j ~  is very similar to the mean intensity J~. The essential difference between 
(54) and (104) is that (104) is a c losed  equation for the symmetrized intensity 
j~, ,  which may therefore be solved in a single step if the source function is 
known. 
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Special care should be devoted to the boundary conditions. The specific 
intensity is specified for negative #'s at the upper boundary, and for the 
positive #'s at the lower boundary; 

I ( - # ,  u, v -- 0) =I~'u,  ( 0 < p < l )  , (105) 

= = I%, (0 < < 1 ) ,  (106) 

(Vma× = co for a semi-infinite atmosphere). Substituting (105) into (103), and 
using (101), we obtain 

# ( d j ~ / d v ~ ) o  --  j , v ( O )  - I ;~  , (107) 

# (d j~v /drv ) r~ . . .  = I ;  + - j , v ( r m a x )  • (108) 

In most cases, the incoming intensity I~'~, = 0. For a semi-infinite atmosphere, 
the diffusion approximation is usually used for the lower boundary condition, 

I~+~, = B~,(rmax) + l a ( O B ~ / a r ~ ) ¢ m . ,  • (I09) 

Equation (104), together with boundary conditions (107) and (108) is 
solved numerically by discretizing the depth variable. The discretized form 
may be written as (writing u -- j , , ) ,  

- - A d u d - 1  + BdUa -- CdUd+l = Sa , (110) 

Detailed expressions for the elements A, B, C are given in the standard 
textbooks (e.g. Mihalas 1978). The resulting tridiagonal set of equations is 
solved by a straightforward Gaussian elimination, consisting in a forward- 
backward recursive sweep, namely 

Dd = (Bd -- A a D a - 1 )  -1  Cd, D t  = B ?  1 C1 , (111) 

Zd = (Bd - AaDd-1)  -1 (Sd -~ AdZd-1) ,  Z1 = B [  1 $1 , (112) 

followed by the reverse sweep, 

Ud "-- DdUd+l n c Zd, UND+I = 0 , (113) 

where N D  is the number of discretized depth points. 

4.2 L i n e a r  C o u p l i n g  P r o b l e m s  

The second class of methods are those in which the source function is given as 
a known, l inear,  function of the specific intensities. A typical example is the 
line formation in a two-level atom, where the source function is given by (82). 
A more general case is the equivalent-two-level-atom source function, (85), 
with the creation and destruction terms z}ij and e~j assumed to be specified. 
In other words, this corresponds to solving the transfer problem for one line 
at a time. 

Numerical solution can either be done by a di f f e ren t ia l  equat ion  approach, 
or by an integral  equat ion  approach. 
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T h e  d i f fe ren t i a l  e q u a t i o n  m e t h o d .  This consists in choosing discrete 
values of frequencies, (m~, i = 1 , . . . ,  NF) and angles (pj, j = 1, . . . ,  NA), and 
to solve a coupled set of transfer equations written for all frequency-angle 
points, 

d l (m; ,  # j ,  7-) _ ¢(m~) [l(m~, p j ,  7-) - S(7-)] , (114) 
#J d r  

where the source function on the right hand side is given by (85), replacing 
the integrals over frequency and angle by a quadrature sum, 

1 NF NA 

- ' ¢(m~) z(m~, Ps) + n , (115) S=(l  )5  wxwj 
/ : 1  j = l  

where w x and wj are the quadrature weights for the integration over fre- 
quencies and angles, respectively. The source function couples all frequencies 
and angles, but the main point is that the source function is a linear function 
of the specific intensities, (85). The system (114) is thus a system of linear 
differential equations. One may construct a column vector I whose elements 
are values of specific intensity at given depth for all pairs of (m, #), and write 
all equations (114) as one differential equation for the vector I. One may then 
apply the Feautrier method described above; equations (100) - (113) remain 
the same, only the meaning of u and the coefficients A, B, C will be differ- 
ent. u will represent a vector ( j , ,~ ,  i = 1 , . . . ,NF,  j = 1 , . . . ,NA)  (i.e. the 
Feautrier intensities at all discretized frequency-angle points), and A, B, C 
will be (NF × NA) × (NF x NA) matrices. The resulting system of linear 
equations forms a block-tridiagonal system. 

T h e  i n t e g r a l  e q u a t i o n  m e t h o d .  This is based on expressing the averaged 
mean intensity J as an integral over S, which easily follows from the formal 
solution of the transfer equation discussed in Sect. 2. By integrating (57) over 
frequencies, we obtain 

/f J(v) = S(t)K1 (It - 7-1) at , (116) 

where the kernel function K1 is given by 

F K1 (s) = El(¢~s) ¢~ am . (117) 

The behavior of the kernel function depends on the type of the absorption 
profile. As can be intuitively expected, it has a narrower peak for the Doppler 
profile than for the Voigt profile. A useful numerical algorithm for computing 
the function K1 was given by Hummer (1981). 

Substituting (116) into (82) yields the following integral equation for the 
source function: 

F S(r) = ( 1 - e )  S ( t ) I Q ( l t - r l ) d t  + eB . (118) 
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This equation was first solved more than three decades ago by Avrett and 
Hummer (1965). The equation was subsequently extensively studied analyt- 
ically by the Russian analytical school. Many elegant analytical results are 
summarized in a monograph by Ivanov (1973); this book is recommended to 
anyone who intends to study the radiative transfer seriously. 

The integral equation approach has several advantages and drawbacks. 
The advantage is that it deals with one simple integral equation for S, so 
in a sense it is formulated in the most efficient way since the knowledge of 
S represents the solution of the problem (individual specific intensities of 
radiation may then easily be obtained by the formal solution of the transfer 
equation). In other words, the coupling of radiation and material proper- 
ties in the integral equation approach is fully contained in the function K1, 
which is calculated in advance, while in the differential equation approach the 
coupling is treated explicitly. Nevertheless, the differential equation approach 
may be reformulated in an efficient way by casting it in the form analogous to 
the integral approach (the so-called Rybicki variant of the Feautrier method 
- see Rybicki 1971). In any case, the integral equation approach suffers from 
a significant drawback, namely that in evaluating the kernel function (and in 
the formal solution of the transfer equation), one faces the task of evaluating 
a large number of exponentials, which are computationally very costly. There- 
fore, most of the actual numerical work in the radiative transfer is nowadays 
being done using the differential equation approach. 

4.3 Acce le ra t ed  L a m b d a  I t e ra t ion  

In the previous section, we saw that the two-level atom problem is a linear 
one, and thus may be solved in a single step, without any iterations. However, 
one pays a high price for that: one has to invert, at every discretized depth 
point, some auxiliary matrices whose dimension is given by the product of 
the number of discretized frequencies times the the number of discretized 
angles. [The situation may be alleviated by employing the so-called Variable 
Eddington Factor technique, developed by Auer and Mihalas (1970), which 
treats the angle coupling separately. The size of matrices is reduced but is 
still given by the number of frequencies, which may be large]. Generally, one 
should realize that any method that describes a coupling of various quantities 
by means of a direct matrix inversion is fundamentally limited in that the 
computer time scales as the cube of the number of quantities (i.e. the number 
of frequency points in our case). 

Therefore, one needs faster schemes. How can this be accomplished? The 
clue is to realize that some part of the physical coupling is more important 
than others. In other words, not all the parts of the coupling should neces- 
sarily be treated on the same footing; it is more or less a numerical overkill 
to do so. So, this hints that the "important part" of the coupling should be 
treated exactly, while the rest may be treated iteratively. 
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Below, I demonstrate the method on an example of a two-level atom. 
However, the method is much more powerful, and can be applied to virtually 
any astrophysical radiative transfer problem. One such application will be 
mentioned in Sect. 5.4. We first recall that the two-level problem may be 
written, by substituting (60) into (82), as 

s = (1 - + (119)  

(which is just another expression of the integral equation form 118). The 
frequency-averaged lambda operator is given by 

= A~¢(v)d~ , (120) 

with the frequency-dependent Lambda operator A~ given by (60). In the 
following, I omit the bar over A for notational simplicity. 

In a seminal paper Cannon (1973) introduced into astrophysical radiative 
transfer theory the method of deferred corrections (also called, somewhat 
inaccurately, operator splitting), long known in numerical analysis. The idea 
consists of writing 

A = A* + ( A -  A*) , (121) 

where A* is an appropriately chosen approximate lambda operator. The iter- 
ation scheme for solving (119) may then be written as 

S ("+1) = ( 1 -  e)A*[S (~+1)] + ( 1 - e ) ( A - A * ) [ S  (~)] + eB , (122) 

or, in a slightly different form whose importance becomes apparent later, 

S <"+~/ - S (") = [ 1 -  ( 1 -  ~)A*]-I[S Fs - S <~)] , (123) 

where 
S Fs = (1 - c)A[S (")] + ,B  . (124) 

Superscript FS stands for Formal Solution. In other words, (122) shows that  
the action of the exact A operator is split into two contributions: an approx- 
imate A" operator which acts on the new iterate of the source function, and 
the difference between the exact and approximate operator, A -  A' ,  acting on 
the previous, known, iterate of the source function. The latter contribution 
may be easily evaluated by the formal solution. 

If we choose A" = 0, we recover the "ordinary" lambda iteration, which 
is straightforward, but is known to converge very slowly - see, e.g. Mihalas 
1978; or Olson, Auer, Buchler (1986 - hereafter referred to as OAB). On 
the other hand, the choice A" = A represents the exact method, which is 
done without any iteration, but an inversion of the exact A operator may 
be costly. So, in order that  A* brings an essential improvement over both 
methods, it has to satisfy the following requirements: i) it has to incorporate 
all the essential properties of the exact A operator in order to obtain a fast 
convergence rate of the iteration process; but at the same time, ii) it must be 
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easy (and cheap) to invert. These requirements are generally incompatible, 
therefore the construction of the optimum A* is a delicate matter. 

The interesting history of the quest for the optimum A* operator is sum- 
marized by Hubeny (1992). Let us stress that a numerically most advanta- 
geous approximate operator is a diagonal (i.e. local) operator A*, in which 
case it represents a multiplication by a scalar value, and its inversion is a 
simple division. To understand that  the term "diagonal operator" is equiva- 
lent to the term "local operator", recall (61) and (62). These equations also 
explain why a good approximation for the exact A-matrix is its diagonal. Re- 
call that  the matrix element Aji tells us what portion of photons created in 
an elementary interval around depth point i [i.e. S(vi)] are being absorbed at 
depth point j [described by J(rj)].  Most photons are absorbed very close to 
the point of their creation, so the diagonal term Aii is much larger than the 
off-diagonal terms. In other words, approximating the exact A by a diagonal 
operator means replacing the kernel function for the mean intensity, (60) by 
a ~-function, which, as seen in Fig. 1, is quite reasonable. (These consider- 
ations also show that  the next simplest approximation for the A-operator 
would be its tridiagonal part; here an interaction between a given depth and 
its immediate neighbors is taken into account.) 

Equation (123) is particularly instructive. It shows that iteration is driven, 
similarly as the ordinary lambda iteration, by the difference between the old 
source function and the newer source function obtained by formal solution. 
However, unlike the ordinary lambda iteration, this difference is amplified by 
the "acceleration operator" [1 - (1 -e)A*] -1. To gain more insight, let us con- 
sider a diagonal (i.e. local) A* operator. The appropriate A* has to be chosen 
such as A* (v) --+ 1 for large r (see below). Since in typical cases e << 1, the 
acceleration operator indeed acts as a large amplification factor. This inter- 
pretation was first introduced by Hamann (1985), who also coined the term 
"Accelerated Lambda Iteration" (ALI). The acronym ALI is also sometimes 
understood to mean "Approximate Lambda Iteration". Other terms for ALI 
are Operator Perturbation (Kalkofen 1987), or Approximate-Operator Itera- 
tion (AOI; Castor et al. 1991, 1992). Finally, the term "accelerated A iter- 
ation" should not be confused with "acceleration of convergence", discussed 
later on. 

How do we know that  A* should approach unity at large depths? Here 
comes the intimate relation between the escape probability and the ALI meth- 
ods, mentioned in Sect. 3.2. Recall that  the escape probability formalism 
gives a relation between between the mean intensity and the source func- 
tion, namely J = (I - p e ) S .  This is exactly what we need here - a local 
approximate relation between ] and S. We may thus put, as a reasonable 
choice, A* =- 1 - pc, which indeed shows that  A* approaches unity for large 
v. This escape-probability form of A ° may be used for numerical work, but 
modern approaches provided more efficient and robust ways to construct the 
approximate A* operator. 
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I will not discuss here all possible variants of the A* operator; the in- 
terested reader is referred to Hubeny (1992). I will only mention several 
impor tant  papers. First, Scharmer (1981) revived Cannon's original ideas, 
and constructed an ingenious A* operator based on the Eddington-Barbier 
relation. Next, OAB have shown, using rigorous mathematics, that  a nearly 
opt imum A* operator is a diagonal part of the true A operator. Olson and 
Kunasz (1987) showed that the tridiagonal and possibly higher multi-band 
parts  of the lambda operator yield even more rapid convergence. Finally, Ry- 
bicki and Hummer (1991) used a formalism based on the Feautrier scheme, 
employing a very efficient algorithm for inverting a tridiagonal matrix, and 
demonstrated that the entire set of the diagonal elements of A can be found 
with an order of ND operations. This feature makes it the method of choice, 
since it avoids computing costly exponentials, a problem inherent to both 
previous approaches (OAB; Olson and Kunasz i987). 

A c c e l e r a t i o n  o f  C o n v e r g e n c e .  This is a highly technical topic, but is 
mentioned here because it has recently become an important  ingredient of 
the ALI methods. Only a brief summary of the basic ideas is presented here. 
Any iterative scheme can be written in the form 

x (~+1) = F • x (~) + x (°) , (125) 

where F is called the amplification matrix. In the case of the linear transfer 
problem, (122), we have F given by F --- [1 - (1 - e)A*] -1 [(1 - c)(A - A*)], 
where x ('~) is an n-th iterate of the source function. 

As it is well known from linear algebra, any iteration method where the 
(n + 1)-th iterate is solely evaluated by means of the previous one converges 
only linearly. However, taking into account information from the earlier it- 
erates, one may find faster schemes. I will not discuss these methods in any 
detail here, the interested reader is referred to the review papers by Auer 
(1987, 1991), or to the original papers cited therein. I just briefly mention 
that  for the most popular scheme, the Ng acceleration, the general expression 
for the accelerated estimate of the solution in the n-th iteration is written 

x ~cc = 1 -  a,~ x (n) + amx ('~-'~) , (126) 
r n ~ l  

where the coefficients a are determined by a residual minimization. Practical 
expressions are given by OAB, Auer (1987, 1991), or Hubeny and Lanz (1992). 

4.4 N o n - l i n e a r  C o u p l i n g  P r o b l e m s  

To illustrate the basic problem of applying ALI in multilevel problems, let us 
first write down the expression for the radiative rates. For simplicity, let us 
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consider only lines; the treatment of continua is analogous. The net transition 
rate for any line i -+ j (i and j ¢ i represent any states of an atom), is 

R.n et 
"~ji = n j A j i  - ( n i B i j - n j B j i ) J i j  , (127) 

The basic ALI equation, (121), gives for J~j 

0~j ---- A*[S new] + (d -A*) [ s ° ' d ]  . (128) 

Here the second term, which may be written as AJ~  .ld, is known from the pre- 
vious iteration. However, the first term contains S new which is a complicated, 
and generally non-linear function of the "new" populations. 

This is an unfortunate situation. By applying the ALI idea, we have suc- 
ceeded to eliminate the radiation intensity from the rate equations, but at 
the expense of ending with a set of non-linear equations for the populations. 
We cope with this problem by one of the possible two ways: 

1. Lmear i za t i on .  The usual way of solving the set of non-linear equations 
is by applying the Newton-Raphson method. This may be rather time 
consuming because each iteration requires to set up and to invert the 
Jacobi matr ix of the system. 

2. Precondi t ioning .  This is an ingenious way to analytically remove inac- 
tive (scattering) parts of radiative rates from the rate equations, and to 
recover a linearity of the ALI form of the rate equations. 

Let us demonstrate the idea of preconditioning on a simple case, where the 
total source function is given by the line source function Sij - n j A j i / ( n i B i j  - 
nj Bji) (i.e., the case of non-overlapping lines and no background continuum). 
Let us further assume that we have a local (diagonal) approximate A* op- 
erator (A* is then a real number). The net rate (127) may be written, after 
some algebra, 

R ~  .t = n j A j i ( 1  - A; , )  - ( n i B i j  - n j B j , ) A J ~  !d , (129) 

which is indeed l inear in the populations! 
This is a very interesting expression. Notice first that  the original net rate, 

(127), is represented by a subtraction of two large contributions, all emission 
minus all absorptions, while the result, the net rate, is rather small. Physi- 
cally, this follows from the fact that  most emissions (i.e. radiative transitions 
j -+ i) are those which immediately follow a previous absorption of a photon 
(transitions i --+ j),  i.e. they are the part of a scat ter ing process. In order to 
improve the numerical conditioning of the system of rate equations, we have 
to somehow eliminate the scattering contributions, i.e. to "precondition" the 
rates. An illuminating discussion of this topic is presented by Rybicki (1984). 

In the ALI form of the net rate, (129), we see that  deep in the atmosphere, 
A* --+ 1, so that  the first term is indeed very small. Similarly, the second term 
is also small because A ] i j  is small. In other words, the radiative rates are 



Stellar Atmospheres Theory: An Introduction 39 

indeed preconditioned. In the context of the ALI approach, this idea was 
first used by Werner and Husfeld (1985); a systematic study was presented 
by Rybicki and Hummer (1991, 1992), who have extended it to the case of 
general overlap of lines and continua. 

5 M o d e l  A t m o s p h e r e s  

5.1 D e f i n i t i o n  a n d  T e r m i n o l o g y  

By the term model atmosphere we understand a specification of all the at- 
mospheric state parameters as functions of depth. Since the problem is very 
complex, we cannot construct analytic solutions. Therefore, we discretize the 
depth coordinate and consider a finite number of depth points - this number 
is typically of the order of several tens to few hundreds. A model atmosphere 
is then a table of values of the state parameters in these discretize depth 
points. 

Which are the parameters that  describe the physical state of the atmo- 
sphere? The list of parameters depend on the type of the model, i.e. on the 
basic assumptions under which the model is constructed. Traditionally, the 
list of state parameters includes only massive particle state parameters (e.g. 
temperature, density, etc.), but not the radiation field parameters. This might 
seem to be in sharp contrast of what was being stated before, namely that  
radiation intensity is in fact a crucial parameter. It indeed is, and in fact 
the radiation intensity is an important state parameter in the process of con- 
structing the atmospheric structure. But, when the system of all structural 
equations, which includes the radiative transfer equation, is solved, we do 
not have to keep the radiation intensity in the list of state parameters which 
has to be stored in the table representing the model. The point is that  once 
all the necessary material properties are given, we may easily determine the 
radiation field by a formal solution of the transfer equation. 

The terminology is sometimes ambiguous. Some astronomers, mostly ob- 
servers, understand by the term "model stellar atmosphere" a table of emer- 
gent radiation flux as a function of wavelength. This is understandable, since 
for many purposes the predicted radiation from a star is the only interesting 
information coming out of the model. Let us take an example of a widely 
used Kurucz (1979, 1994) grid of model atmospheres. For each combination 
of input stellar parameters (Tefr, log g, and metallicity), he publishes two ta- 
bles; one is the "model atmosphere" in our definition, i.e. a relatively short 
table of values of temperature, electron density, etc., in all depth points; the 
second table is a table of emergent flux versus wavelength. In fact, many if 
not most workers use only this second table. A drawback of using the tabu- 
lated model flux is that  it has a fixed wavelength resolution (in the case of 
Kurucz models, it is relatively coarse - 10/~), and thus cannot be used for 
purposes which require a high-resolution predicted spectrum. On the other 
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hand, from the genuine model, one may easily compute a spectrum of any 
resolution. 

Below, I summarize the basic types of model stellar atmospheres. 

I) Sta t ic  models .  These are models constructed under the assumption 
of hydrostatic equilibrium. Consequently, these models apply only to atmo- 
spheric layers that are indeed close to hydrostatic equilibrium, i.e. the macro- 
scopic velocity is small compared to the thermal velocity of atoms. These 
layers are traditionally called stellar photospheres. Basic input parameters 
are the effective temperature, Teff, the surface gravity, g (usually expressed 
as logg), and chemical composition. Strictly speaking, one should give the 
values of abundances of all individual chemical species. In reality, one usually 
considers solar abundances, 6r some ratio of some or all abundances with 
respect to the solar one. If all elements but hydrogen and helium share the 
common abundance ratio with respect to the solar abundances, this ratio is 
called metallicity. There are some additional input parameters, like the mi- 
croturbulent velocity, or, in the case of convective models, the mixing length 
(or some other parameters approximating the convection) 

There are several basic types of models: 

- LTE grey models. They are the simplest possible models, based on the 
assumption that the opacity is independent of frequency. They are not 
used any longer for spectroscopic work, but they are useful for providing 
an initial estimate in any iterative method for constructing more realistic 
models, and they are very useful for pedagogical purposes. For this reason, 
they will be discussed at length in the next section. 

- LTE models. They are based on the assumption of LTE (see Sect. 1.3). 
Two state parameters, for instance temperature, T, and density, p, (or 
electron density, ne), suffice to describe the physical state of the atmo- 
sphere at any given depth. 

- NLTE models. This is a rather ambiguous term which encompasses any 
model which takes into account some kind of a departure from LTE. In 
early NLTE models, the populations of only few of the low-lying energy 
levels of the most abundant species, like H and He, were allowed to depart 
from LTE; the rest was treated in LTE. There are two basic kinds of NLTE 
models, or approaches to include NLTE effects: 

• Models solving for the full structure. The codes of general use include 
an early H-He model atmosphere code described by Mihalas et al. 
(1975), the Kiel code (Werner 1987); PAM (Anderson 1987), and a 
universal code TLUSTY (Hubeny 1988). 

• NLTE line formation (also called a restricted NLTE problem). Here, 
the atmospheric structure (temperature, density, etc.) is assumed 
to be known from previous calculations (either LTE or simplified 
NLTE), and is kept fixed, while only radiative transfer and statisti- 
cal equilibrium for a chosen atom/ion is solved simultaneously. The 
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popular codes of this sort include DETAIL/SURFACE (Butler and 
Giddings 1985); MULTI (Carlsson 1986), and MALI (Rybicki and 
Hummer 1991). 

- NLTE line-blanketed models. This is in fact a subset of the previous 
item. I consider it separately because these models represent a qualita- 
tively new step in the model construction. They are models where NLTE 
is considered for practically all energy levels and transitions between 
them - lines and continua - that  influence the atmospheric structure. 
The number of such lines may actually go to millions, so the problem is 
presently extremely demanding on the computer resources and ingenuity 
of the numerical methods used. In these models, it is no longer necessary 
to compute the atmospheric structure using simple atomic models, and 
recalculate NLTE line formation in individual atoms separately. These 
models will be discussed in more detail in Sect. 5.5. 

I I )  Uni f i ed  mode l s .  By definition, unified model atmosphere are those 
which relax the a priori assumption of hydrostatic equilibrium, and which 
thus treat the whole atmosphere ranging from an essentially static photo- 
sphere to a highly dynamical wind on the same footing. Ideally, this would 
mean solving self-consistently the set of hydrodynamic equations (2) - (4) 
and the radiative transfer equation. This is a tremendous task, which has not 
yet been even attempted to solve generally. Instead, one treats the hydrody- 
namic of the wind taking into account radiation in some approximate way 
(for instance, the line driven wind theory by Castor et al. 1975; or Pauldrach 
et al. 1986 - see Lamers, second contribution to this Volume). Once the basic 
hydrodynamic structure (essentially, the density and velocity as a function 
of radius) is determined, one solves in detail a NLTE radiative transfer, pos- 
sibly together with the radiative equilibrium equation. This approach was 
pioneered by the Munich group (Gabler et al. 1989; Sellmaier et al. 1993), 
who also coined the term "unified models". The name stresses a unification 
of a photosphere and wind; prior to this approach there were separate models 
for photospheres and for winds, so-called core-halo models. 

Besides Munich models, there exists several other variants of unified model 
atmospheres. I do not present a review of these approaches (some topics are 
covered in other lectures (Lamers, this Volume; Fullerton, this Volume); I 
just briefly mention that  various unified models are computed 

- with or without self-consistent T(r).  That  is, either the radiative equi- 
librium is solved exactly (e.g. Gabler et al. 1989; Hillier 1991); or the 
temperature structure is approximated for instance by the grey temper- 
ature structure (de Koter et al. 1993; Schaerer and Schmutz 1994); 

- with or without Sobolev approximation in the wind; 
- with or without metal line blanketing 
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5.2 Basic Equa t ions  of Classical Stel lar  Atmospheres  

Let us summarize the basic equations of stellar atmospheres for the case 
of horizontally-homogeneous, plane-parallel, static atmosphere. This case is 
sometimes called the classical stellar atmosphere problem. 

Rad ia t ive  t rans fe r  equat ion.  The most advantageous form of the transfer 
equation for the use in model atmosphere construction is either the usual 
first-order form, e.g. (29), which is then solved by the DFE method, or the 
second-order form with the variable Eddington factor, 

d2(fK]~) 
- & ' (130)  

It involves only the mean intensity of radiation, J~ (which is a function of 
only frequency and depth), but not the specific intensity (which is in ad- 
dition a function of angle #). In fact, it is the mean intensity of radiation 
which enters other structural equations, and therefore the mean intensities, 
not specific intensities, are to be taken as the atmospheric state parameters. 
An obvious numerical advantage is that instead of dealing with N F  × NA 
parameters describing the radiation field per depth (NF and NA being the 
number of discretized frequency and angle points, respectively) we have only 
N F  parameters. A discretization of the depth variable, mentioned above, is 
done in such a way that depth points run from the "surface" depth, where 
v~ << 1 for all frequency points, to a depth where I-~ >> 1 for all frequencies 
(because the diffusion approximation, (109), is used for the lower boundary 
condition). 

H y d r o s t a t i c  equi l ibr ium equat ion .  This equation reads, recalling (7), 

dP 
dz - - P g  ' (131) 

where P is the total pressure. Introducing the Lagrangian mass m, defined 
as the mass in the column of a cross-section of 1 cm ~ above a given point in 
the atmosphere, 

dm = - p d z  , (132) 

we obtain for the hydrostatic equilibrium equation simply 

dP 
dm = g ' (133) 

which, since g is constant in a plane-parallel atmosphere, has a trivial solu- 
tion, P(m)  = m g  + P(O). In fact, this is the reason why one usually chooses 
m as the basic depth variable of the 1-D plane-parallel atmospheres problem. 
Nevertheless, it should be kept in mind that the total pressure is generally 
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composed of three parts, the gas pressure, Pg~, the radiation pressure, Prad, 
and the turbulent pressure, Pt~b, i.e. 

4~r [ ¢ o  1 2 
P = Pgas + Prad -{- Pturb = N k T  + - -  Jo K v d u  + p vtur6 

c 2 ' 
(134) 

where Vturb is the microturbulent velocity. The hydrostatic equilibrium equa- 
tion may then be written as (neglecting the turbulent pressure) 

dPg  
d m  

4~r ~0~ dK~ 4~r f0°° X-Z-~ H~d~ (135) 
- g  c d m  = g  c p 

We may think of the r.h.s, of this equation as the effective gravity acceleration, 
since it expresses the action of the true gravity acceleration (acting downward, 
i.e. towards the center of the star) minus the radiative acceleration (acting 
outward). In other lectures (Lamers, second contribution to this Volume) 
we saw that this is the term which is crucial in the radiatively-driven wind 
theory. 

R a d i a t i v e  e q u i l i b r i u m  e q u a t i o n .  This expresses the fact that  the total 
radiation flux is conserved, see (8), 

~0 c~ O" H~dv = const = ~ Te4fr . (136) 

This equation may be rewritten, using the radiative transfer equation, as 

fo ( ~ J ~  - y~) d r  = ,~ (J~ - S~) dL,= 0 , (137) 

Notice that  (137) contains the thermal absorption coefficient ~ ,  not the total 
absorption coefficient X~. This is because the scattering contributions can- 
cel out. To illustrate this mathematically, let us take an example of electron 
scattering. The absorption coefficient for the process (see 141) is given by 
he,re; Cre being the electron scattering (Thomson) cross-section. The emission 
coefficient is then given by necr,~J~. As it is seen from (137), these two contri- 
butions cancel. This is also clear physically, because an absorption followed 
immediately be a re-emission of a photon does not change the energy balance 
of the medium, and therefore cannot contribute to the radiative equilibrium 
equation. 

S t a t i s t i c a l  e q u i l i b r i u m  e q u a t i o n s .  These are also sometimes called rate 
equations. These are in fact equations (6), where the collisional term is written 
explicitly, 

j#; j#; 
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where/~j  and Cij is the radiative and collisional rate, respectively, for the 
transition from level i to level j. The 1.h.s. of (138) represents the total number 
of transitions out of level i, while the r.h.s, represents the total number of 
transitions into level i from all other levels. The radiative rates are given 
by expressions analogous to those discussed for a two-level atom in Sect. 3.1 
(notice that they depend on the radiation intensity), while the collisional 
rates are assumed to be given functions of temperature and electron density. 

The set of rate equations for all levels of an atom would form a linearly 
dependent system. Therefore, one equation of the set has to be replaced by 
another equation. Usually, this is the total number conservation equation 
(or abundance definition equation), ~ i  nl = Natom, where the summation 
extends over all levels of all ions of a given species. 

Two comments are in order. First, in practice there are only a limited 
number of levels of an atom/ion which are treated explicitly, i.e. for which 
the equation of the form (138) is actually written down and solved. These are 
usually low-lying levels. The remaining levels are typically treated in some 
approximate way, as, for instance, in LTE with respect to the ground state 
of the next ion (following Auer and Mihalas 1969), or with respect to the 
highest explicit level of the current ion. Another possibility is to express this 
contribution through the partition function (Hubeny 1988). In any case, the 
abundance definition equation has to be modified to read 

ni-]- ~ n i - "  N'atom • (139) 
explicit upper 

Second, the above abundance definition equation can replace the rate 
equation for any level. This level was usually taken, following Auer and Mi- 
halas (1969), to be the ground state of the highest ion of the given species. 
However, a numerically more stable option is to choose a level which has the 
highest population of all the levels of the given species, as was suggested by 
Castor et al. (1992). 

Charge  conservat ion  equat ion.  This equation expresses the global elec- 
tric neutrality of the medium, 

n , z ,  - = o , (140) 
{ 

where Zi is the charge associated with level i (i.e. equal to 0 for levels of 
neutral atoms, 1 for levels for once ionized ions, etc.). The summation now 
extends over all levels of all ions of all species. 

Auxi l ia ry  def in i t ion  equat ions .  There is a number of auxiliary expres- 
sions, like the definition equations of the absorption and emission coefficient, 

= : 8  + ) 
i j>i i 
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/g 

where the four terms represent, respectively, the contributions of bound- 
bound transitions (i.e. spectral lines), bound-free transitions (continua), free- 
free absorption (also called the inverse brehmstrahlung), and of electron scat- 
tering. Other scattering terms, like for instance the Rayleigh scattering, may 
also be added if appropriate to the problem at hand. Here, ~(u) are the 
corresponding cross-sections; subscript x denotes the "continuum", and n~ 
the ion number density. The negative contributions in the first three terms 
represent the stimulated emission (remember, stimulated emission is treated 
as negative absorption). There is no stimulated emission correction for the 
scattering term, since this contribution exactly cancels with ordinary absorp- 
tion (for an illuminating discussion, see Shu 1991). Finally, notice that the 
relation between the bound-bound cross section ~ij(u) and previously in- 
troduced quantities (the Einstein coefficients and the absorption profile) is 
simply o'ij (u) = (huo/4~r)B~j¢(u). 

Analogously, the thermal emission coefficient is given by 

* - h u / k T  

i j>~ i 

+ ~_~ nen,~o',:,~(u,T)e -h~/kT ] (142) 

The three terms again describe the bound-bound, bound-free, and free-free 
emission processes, respectively. 

These equations should be complemented by expressions for the relevant 
cross-sections, definition of LTE populations, and other necessary expres- 
sions. The resulting set forms a highly-coupled, highly non-linear system of 
equations. The equations and corresponding quantities that are determined 
by them are summarized in the Table 1. 

Table  1. Summary of classical stellar atmosphere equations and state pa- 
rameters 

Equation Corresponding state parameter 

Radiative transfer Mean intensities, J~ 

Radiative equilibrium Temperature, T 
Hydrostatic equilibrium Total particle density, N 

Statistical equilibrium Populations, ni 

Charge conservation Electron density, ne 
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5.3 L T E - G r e y  Mode l :  
A Tool  to  U n d e r s t a n d  t h e  T e m p e r a t u r e  S t r u c t u r e  

Before discussing the methods and results of solving the full stellar atmo- 
sphere problem, it is very instructive to consider an extremely simplified case 
of the so-called LTE-grey model. Although these models have not been used 
to describe a real stellar atmosphere for more than four decades, they are 
still very useful because i) they provide a beautiful pedagogical tool to un- 
derstand an interplay between radiative equilibrium and radiative transfer, 
thus to understand a behavior of temperature as a function of depth; and ii) 
they provide an excellent starting solution for iterative methods to construct 
more sophisticated models. 

The basic assumption of these models is that  the absorption coefficient is 
independent of frequency, 

X~ -- X • (143) 

In reality, one uses some frequency-averaged opacity, usually the Rosseland 
mean opacity, (71). The other basic assumption is that of LTE, S~, = B~,. 
The radiative equilibrium equation thus reduces to 

J = B , (144) 

where the quantities without the frequency subscript t/ are understood as 
frequency-integrated quantities, 

// // J = J ~ d u  ; B = B~,du = ~T 4 (145) 

The second equation of the problem, the radiative transfer equation (ac- 
tually, its second moment), reads 

dK 
ci~ = H  ~ K ( r ) = H . r + c o n s t ,  (146) 

because H is constant with depth, as follows from the radiative equilibrium. 
The constant in the above equation is equal to K(0). Invoking, for simplicity, 
the Eddington approximat ion-  K = J / 3 ,  and K(0) = (2/3)H - we obtain 
(recall that the flux is given by F = 4H), 

J ( r )  = ~ F .  r +  , (147) 

We know that  the total flux, F,  is specified through the effective temperature, 
F = ~T~ff. Combining (145) and (147) together, we obtain 

= T &  + , (148)  

There exists an elegant analytic solution of the general grey atmosphere prob- 
lem which yields an analogous expression for the temperature as (148), only 
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the constant 2/3 is replaced by a function q(r), called Hopffunction. It is a 
smoothly varying function of optical depth, with q(0) = 0.577; q(oo) = 0.71, 
which is not very far from the Eddington approximation value. 

An important point to realize is that the grey temperature structure fol- 
lows just from the radiative transfer equation and the radiative equilibrium 
equation. The hydrostatic equilibrium equation does not enter this deriva- 
tion. In other words, the temperature in a grey atmosphere, as a function of 
mean optical depth, does not depend on the surface gravity. However, the 
hydrostatic equation determines the relation between the averaged optical 
depth and the geometrical coordinate (m or z). 

We see that the temperature is a monotonically increasing function of 
optical depth. Why this is so? It is easy to understand it in physical terms. 
The condition of radiative equilibrium stipulates that the total radiation flux 
is constant with depth in the atmosphere. However, the radiation flux mea- 
sures the anisotropg of the radiation field (i.e. the flux would be zero for 
perfectly isotropic radiation). We know from the transfer equation, and in 
particular from the diffusion approximation, that the anisotropy decreases 
with increasing depth in the atmosphere. The only way how to maintain the 
constant flux in spite of decreasing anisotropy of radiation is to increase the 
total energy density of radiation (proportional to J), i.e. the temperature 
(recall that J = S = B = o-T4). 

The fact that the integrated J is equal to integrated B at all depths v 
does not necessarily mean that the frequency-dependent J~ has to be equal 
to B~, for all frequencies. In fact, we should expect that there should be a 
frequency range for which J~ > B~, i.e. JL, - B~ > 0; these regions may 
be called "heating" regions; while at the rest of frequencies J~ < B~, i.e. 
J ,  - B, < 0; these regions may be called "cooling" regions. Remember, J 
is proportional to the number of photons absorbed per unit optical depth, 
while S = B to the number of photons emitted per unit optical depth. Thus, 
for instance, J~ > B~, means that more photons are absorbed than emitted 
at frequency ~,; the energy of extra absorbed photons must then increase the 
internal energy, i.e. the temperature, of the medium. 

Which frequency regions are the heating ones, and which are the cooling 
ones? In the case of an LTE-grey atmosphere, the answer is easy. Let us 
first write down some useful expressions. From the general expression for the 
Planck function, (22), we may easily derive two limiting expressions: In the 
high frequency limit, (hu/kT) :>:> 1, we obtain the Wien form, 

2hv 3 
B(v, T) ,~ ~ exp(-hv / k T) (149) 

C2 

while the low-frequency limit, (hu/kT) << 1, is called the Rayleigh-Jeans tail, 

B(~, T) ~ 2kv2 T (150) 
¢2 
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Another important expression is the Eddington-Barbier relation for the mean 
intensity at the surface, which may be derived from the Eddington-Barbier 
relation (41) integrated over angles, 

J(0) = ~ S ( v =  1) . (151) 

Let us consider the surface layer of a grey atmosphere. If the frequency ~, 
is "large", i.e. in the Wien regime, then a decrease of the local temperature 
between v : 1 and the surface (r = 0), translates into a large decrease of 
B~(T(T)), because for large frequencies the Planck function is very sensitive 
to T - see (149). In other words, B at the surface may be significantly (even 
orders of magnitude) lower than B at V = 1. Since the mean intensity at the 
surface is about one half of B(T= 1), it is clear that  J~,(0) > B~,(0) for these 
frequencies. The large frequencies are therefore the "heating" frequencies. 

In contrast, for low frequencies (the Rayleigh-Jeans tail), B is linearly pro- 
portional to T. We know from the T(T) relation for a grey atmosphere that  
T(0) ~ 0.8 T(7-= 1). The factor 1/2 from the Eddington-Barbier relation will 
now dominate, so we get Jr(0) : (1 /2)B, , ( r= 1) < B~,(0). Consequently, the 
low frequencies are the "cooling" frequencies. One can make these consider- 
ations more quantitative, but this is not necessary; the only important point 
to remember is that  the high-frequency part of the spectrum is responsible 
for heating, while the low-frequency part is responsible for cooling. 

T wo- s t ep  g r e y  mode l .  The above considerations are interesting, but not 
particularly useful for a purely grey atmosphere. They are, however, very 
helpful if we consider an atmosphere with some simple departures from the 
greyness. Let us consider a two-step grey model, i.e. with the opacity given as 
a step function, X~, : X (the original grey opacity) for v < ~'0, and X~, = ax 
for v > v0, with a >> 1, i.e. with a large opacity for high frequencies (one may 
visualize this as a schematic representation of a strong continuum jump, for 
instance the Lyman discontinuity). We will denote the original optical depth 
as  T ° ld ,  and the new one (for v ~ v0), as vi ew. Let us further assume that  
the frequency ~'0 is high enough to be in the range of "heating" frequencies. 

What  are the changes of the temperature structure with respect to the 
original grey temperature distribution implied by the opacity jump? We will 
consider separately the surface layers v ~ 0, and the deep layers. 

The surface layers. Since the opacity for v _> v0 is much larger than the 
original opacity, we may neglect the contribution of the latter to the radiative 
equilibrium integral, so the modified radiative equilibrium equation becomes 

Jvdv = B~,dv , (152) 
o o 

which, together with the Eddington-Barbier relation J~(0) = B~,(r2ew = 1)/2 
yields for the new surface temperature, To, the expression 

F // (1/2) By (T(v new = 1)) dv = Bv(T0)dv , (153) 
o o 
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from which follows that To < T(rn ew - 1). Since the temperature at ./.new . _  1 
must be close to the original temperature at the surface (recall that  v~ new >> 
~.old), the new temperature at the surface is lower than the original surface 
temperature, which gives rise to the term surface cooling effect. 

The above derivation was more or less a mathematical one. But, in physi- 
cal terms, why do we get a cooling? This is simply because by adding opacity 
in the heating portion of the spectrum, we effectively suppress this heating. 
Therefore, we obtain a cooling. These considerations also suggest that  by 
adding an additional opacity in the cooling, i.e. the low-frequency, part of 
the spectrum, we may actually get a surface heating of the atmosphere. 

The deep layers. It is intuitively clear that the atmospheric layers which are 
optically thick in all frequencies will be little influenced by the additional 
opacity jump. However, an interesting region is the one which is opaque for 
large frequencies (u > u0), (i.e. r new >> 1 for these frequencies), while still 
transparent for the original opacity, r ° ld  < 1. Since the optical depth is large 
for u >_ v0, J~, ~ B~, for these frequencies, and therefore the monochromatic 
flux is close to zero. The condition of radiative equilibrium at those depths 
may be written as J~ = B ~, where the primed quantities are defined as partial 
integrals, e.g. J~ = fo  ° J~du, and analogously for B. From the radiative 
transfer equation and the Eddington approximation, we have d Jr~dr = 3H 
(not H~; or, better speaking, H ~ = H, because there is no flux for u > ~'0). 
We may formally write J~ = cr~T 4, and by repeating the same procedure as 
in deriving the original grey temperature structure, we obtain 

T 4 = (3/4)(~/~')  T& (~ + 2/3) . (154) 

We have cr' < c~, because J~ < J.  This is simply because the energy density 
of radiation for u < v0 is smaller than the total energy density. Therefore, 
the new temperature is larger than the original one. Consequently, the phe- 
nomenon is called the backwarming effect. 

Again, what is the explanation of this effect in physical terms? By adding 
opacity, the flux in the high-opacity part drops. Therefore, the flux in the 
rest must increase in order to keep the total flux constant. However, the only 
way how to accomplish it in LTE is to increase the temperature gradient, 
and therefore the temperature itself in the previously flat T(r) region. 

One may wonder why we spend so much time with an admittedly crude 
and unrealistic model, such as a simple two-step grey model. However, it 
should be realized that  the above discussed phenomena of surface cooling and 
backwarming are quite general, and are not at all limited to a grey approxi- 
mation. In any model, including sophisticated NLTE models (see Sect. 5.5), 
there are always frequencies which cause heating and those which cause cool- 
ing. Any process which changes opacity/emissivity in those regions changes 
the overall balance and therefore influences the temperature structure. In the 
NLTE models, there are typically several intervening or competing mecha- 
nisms, but the fundamental physics behind the temperature structure is ba- 
sically the same as in the case of the grey model. Likewise, the mechanism of 
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backwarming is quite general. The beauty of the grey model is that one may 
describe all these phenomena by a simple analytical model. 

5.4 LTE and  NLTE M o d e l  A t m o s p h e r e s  

LTE models .  Constructing LTE model stellar atmospheres is now a more 
or less standard procedure. It consists in solving simultaneously basic struc- 
tural equations (130) - (142), where (138) is replaced by the Saha-Boltzmann 
distribution, (11) and (12). Consequently, the absorption and emission co- 
efficients are known functions of temperature and electron density, i.e. they 
are given locally. Nevertheless, there is still a non-local coupling of radiation 
field and material properties via the radiative equilibrium equation (and, to 
a smaller extent also the hydrostatic equilibrium equation, via the radiation 
pressure term), which has to be dealt with. 

I will not discuss this topic here in any detail. I just mention that the field 
of LTE model atmosphercs is completely dominated by the Kurucz model 
grid (Kurucz 1979; 1994), and by his computer program ATLAS (Kurucz 
1970; 1994). Yet, there are several independent computer programs, designed 
specifically for very cool stars - Gustafsson et al. (1975); Tsuji (1976); John- 
son et al. (1977); Allard and Hauschildt (1995); to name just few. 

NLTE models .  Why do we expect that departures from LTE may be im- 
portant in stellar atmospheres? As explained above, departures from LTE 
arise when the radiative rates dominate over the collisional rates. These con- 
ditions typically occur at high temperatures and low densities. The higher the 
effective temperature, and the stronger the radiation field, the deeper in the 
photosphere we may expect departures from LTE. We also anticipate that 
the departures will be largest at frequencies with highest opacities (EUV, 
cores of strong lines). When the opacity is large, the observed spectrum will 
be formed higher in the atmosphere where the density of the material is low. 
Therefore, NLTE models are most important for interpreting observed spec- 
tra of hot stars (O, B, A stars, typically Tefr > 10 000K) and of supergiants, 
i.e. the intrinsically brightest stars. 

However, the most important point to realize is that for a star o[ any 
spectral type, there is alw~xys a wavelength range, and correspondingly a layer 
in the atmosphere, where NLTE effects are important. Yet, the meaning of 
the assessment "NLTE cffects are important" is somewhat arbitrary. The 
point is that a precise definition of this term should in principle involve the 
desired accuracy of the predicted spectrum. For instance, if one requires an 
accuracy of, say, 10% in the predicted flux in the optical and UV spectrum 
for a main-sequence B star, then one may say that LTE models are sufficient. 
However, NLTE models would be necessary if one requires an accuracy of, say 
2-5 %; and NLTE models would still be necessary if one requires an accuracy 
of 10-20% for the same st:tr in the EUV spectrum range (wavelengths below 
the Lyman limit, i.e. 912 :~-). 
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How one calculates NLTE model atmospheres? The realization that  the 
nonlocal coupling of physical quantities is extremely important  led Auer and 
Mihalas (1969) to develop the complete linearization (CL) method to solve 
the set of discretized structural equations. This is a very robust method based 
on the Newton-Raphson scheme. All equations are linearized and are treated 
on the same footing, allowing a fully consistent treatment of all couplings. 
The method has brought an enormous progress in the modeling, and in fact 
has opened a new era in the stellar atmospheres theory. However, a high price 
had to be paid. Because of the need to invert individual block matrices of the 
general Jacobi matr ix  of the system, the computer time increases with the 
cube of the number of unknowns. Therefore, it was possible to consider only a 
limited number of atomic levels and opacity sources (lines). Typically, about  
10 to 15 energy levels were allowed to depart from their LTE populations; 
only a few lines were included explicitly, and the radiative transfer was solved 
at typically 100 frequencies. It also became clear very soon that dealing with 
millions of lines within this framework would be out of the question regardless 
of how rapidly the computer technology might progress. 

However, already the early simplified NLTE models have demonstrated 
that  departures from LTE form an essential feature in interpreting the spec- 
tra of hot stars (for a review, see Mihalas 1978, and Kudritzki and Hummer  
1990). In the same period, the importance of metal line blanketing on the at- 
mospheric structure was demonstrated numerically, and a widely used grid of 
LTE line-blanketed model atmospheres was constructed (Kurucz 1979). Since 
then, a debate ensued as to what kind of model atmospheres is more ade- 
quate: metal line-blanketed LTE models or NLTE models without blanketing? 
Models accounting for both metal line-blanketing effects and departures from 
LTE were then deemed an unreachable dream. 

The dream had slowly started to come through in the 1980's with the 
advent of the ALI method. The first who applied the ALI idea to the model 
stellar atmosphere construction was Werner (1986; 1987; 1989). He has shown 
that the method has a great potential, because it effectively eliminates the 
radiation intensities from the set of model unknowns. One is therefore able to 
consider many more frequency points, and consequently many more atomic 
transitions, in the model construction. Moreover, the method was found to 
be more stable than the complete linearization method in many cases. 

A disadvantage of the ALI scheme is that it sometimes converges rather 
slowly. This is easy to understand, since the information about changes in 
state parameters is lagged, i.e. is communicated to the rest of the state pa- 
rameters only in the subsequent iteration. Nevertheless, the time per iteration 
is very small. Moreover, the speed of convergence can be accelerated by pre- 
dicting better estimates of the solution using the acceleration of convergence 
techniques (see Sect. 4.3). In contrast, the CL method requires only a small 
number of iterations, because it is a global method with an almost quadratic 
convergence. The time per iteration may however be enormous. 
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What was therefore needed was a method which would combine the ad- 
vantages of both these methods; namely the convergence rate (i.e. the number 
of iterations required to reach a given accuracy) being virtually as high as 
for the standard CL method, while the computer time per iteration is almost 
as low as for the standard ALI method. This was exactly what was achieved 
by developing the so-called hybrid complete linearization/accelerated lambda 
iteration (CL/ALI) method (Hubeny and Lanz 1995). The method formally 
resembles the standard complete linearization; the only difference being that 
the radiation intensity at selected frequency points is not explicitly linearized; 
instead, it is treated by means of the ALI approach. 

5.5 Line B lanke t ing  

The term line blanketing describes an influence of thousands to millions of 
spectral lines on the atmospheric structure and predicted emergent spectrum. 
The line blanketing influences not only the emergent spectrum (the so-called 
line blocking), but also, and more importantly, the atmospheric structure (the 
backwarming and the surface cooling effects). Although the ALI-based meth- 
ods have opened the way to attack this problem, the enormous complexity of 
the iron-peak elements (i.e., we have to account for hundreds of energy levels 
and millions of line transitions per ion) still precludes using direct methods 
which were successfully used for light elements (He, C, N, O, etc.). 

Statistical methods are therefore necessary. The idea is to avoid dealing 
with all individual energy levels of complicated metal species. Instead, several 
states with close enough energies are grouped together to form a so-called 
"superlevel". The basic assumption is that all individual levels within the 
same superlevel share the same NLTE departure coefficient; in other words, 
the individual levels forming a superlevel are in Boltzmann equilibrium with 
each other. This idea was pioneered by Anderson (1989). The transitions 
between individual superlevels, called "superlines", are treated by means of 
two possible approaches: 

- Opac i t y  D i s t r ibu t ion  F u n c t i o n s  (ODF). The idea is to resample a com- 
plicated frequency dependence of the superline cross-section to form a 
monotonic function of frequency; this function is then represented by a 
smM1 number of frequency quadrature points (Anderson 1989; Hubeny 
and Lanz 1995). 

- Opac i t y  S a m p l i n g  (OS). The idea is a simple Monte Carlo-like sampling of 
frequency points of the superlevel cross-section (Anderson 1991; Dreizler 
and Werner 1993). The advantage of this approach is that it can easily 
treat line blends and overlaps; the disadvantage is that one has to be very 
careful to choose a sufficiently large number of frequency points, since 
otherwise the representation may be inaccurate. Indeed, the line cores, 
which represent the region of maximum opacity, are relatively narrow. 
Considering too few frequency points may easily lead to missing many 
important line cores. 
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These two approaches are illustrated in Fig. 5. We consider the superline 
between the superlevels 1 and 13 of Hubeny and Lanz (1995) model of Fe III. 
The detailed cross-section (upper panel) has been computed for some 16 000 
internal frequency points. The dotted line in the middle panel represents the 
Opacity Sampling by 37 (equidistant) wavelength points, while the number 
of points is doubled for the full line. This shows that unless a large number of 
frequency points is considered, the OS representation may be quite inaccurate 
since practically all strong lines are missed. Finally, the lower panel shows 
the Opacity Distribution Function representation. With 24 points only, we 
have already a fairly accurate representation of the resampled cross-section 
to be used in model atmosphere construction. 

The first NLTE model atmospheres including iron-line blanketing were 
presented by Anderson (1989), Anderson and Grigsby (1991), Dreizler and 
Werner (1993), and Hubeny and Lanz (1995). The strategy for computing 
line-blanketed model atmospheres is as follows. Hydrogen, helium, and the 
most important light metals (C, N, O, possibly others) are represented by 
detailed atomic models, and all the individual lines are treated separately. 
This involves of the order of 100 atomic levels, and up to 1000 lines, which 
are represented by several thousands of frequency points. The heavy (iron- 
peak) metals are treated by means of the statistical, ODF or OS, approach. 
Since the dominant opacity is provided by iron and nickel, we either neglect 
all the other iron-peak elements, or group all of them together to form an 
averaged iron-peak element (as suggested first by Anderson 1989). 

Finally, I will show how the line blanketing influences the temperature 
structure of an atmosphere. As an example, let us take a model with Tee = 
35 000 K, and logg -- 4, which corresponds to a main-sequence O-star. Fig- 
ure 6 shows the temperature as a function of depth (expressed as column 
mass in g cm-2). We consider several NLTE model atmospheres, a) H-He 
LTE model, b) H-He NLTE model, c) NLTE model with light elements only 
(H-He-C-N-O-Si); and d) fully blanketed NLTE model (H-He-C-N-O-Si-Fe- 
Ni). All models consider all lines originating between explicit levels of all 
species that are taken into account. 

The behavior of temperature is easily explained by a reasoning analogous 
to that put forward in the preceding subsection. The frequency region above 
the Balmer limit (i.e.)~ < 3648 ]k) is the "heating region". Therefore, adding 
an opacity there causes a surface cooling. This explains the cooling in LTE 
H-He model (caused mainly by the hydrogen and He II Lyman and Balmer 
lines), and also the additional cooling in the H-He-C-N-O-Si model (which is 
caused mainly by the C IV resonance doublet at A 1550/~). Similarly, the 
additional opacity in the heating region causes the heating of deeper layers, 
the so-called backwarming effect. Indeed, it is clearly seen that while the 
lines of light elements cause only a modest backwarming (in the layers at 
logm ~ - 1  and deeper), the Fe and Ni lines, being quite numerous, cause an 
appreciable heating in these layers. 
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Fig. 5. An illustration of various numerical treatments of a typical superline. 
Upper panel: the detailed cross-section; Middle panel: the Opacity Sampling 
representation; Lower panel: the Opacity Distribution Function representa- 
tion. Small squares indicate the points used to represent this ODF in model 
atmosphere calculations 
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Fig.  6. Temperature structure for four model atmospheres with the same 
parameters: Tefr = 35000K, logg = 4. Thick line: fully blanketed NLTE 
H-He-C-N-O-Si-Fe-Ni model; dashed line: NLTE model with light elements 
(H-He-C-N-O-Si); thin line: NLTE H-He model; dotted line: LTE H-He model 

Now, how it is possible that few lines (of H, He, or light elements) are able 
to cause a significant surface cooling, while a large number of lines is needed 
to get a significant backwarming? Again, this is explained by employing the 
two-step grey model considerations. Let us take equation (152). It shows that 
a strong opacity source completely dominates the radiative equilibrium inte- 
gral, so that the other frequency regions become unimportant.  The original 
two-step grey model considers the strong opacity source to extend from v0 to 
infinity; however, the essence remains the same if the strong opacity source 
is just one line, or few strong lines. In the case of one dominant line, the 
radiative equilibrium integral reduces to, in analogy to (152), 

Y = s L , (155) 

which follows from (137), (72), (73), and (78). In LTE, we get surface cooling 
due to the exactly same reasons as in the two-step grey model (LTE forces 
S to be equal to B, and B is forced to be equal to J at the surface, which is 
low). In NLTE, the cooling effect may be even stronger, because the two-level 
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source function, (82), implies that j = S L - B, and we know from Sect. 3.1 
that  the two-level atom source function decreases significantly towards the 
surface. 

On the other hand, the backwarming effect is primarily caused by blocking 
of the flux by additional opacity sources; the more extended (in the frequency 
space) the blocking is, the larger the backwarming (recall (154) and subse- 
quent discussion). The actual strength of a line does not matter  so much 
as soon as it is able to efficiently block the flux. Therefore, a single narrow 
and very strong line is quite efficient in the surface cooling, but relatively 
inefficient in the backwarming. 

There is still one remaining puzzling feature: Why, in view of all what 
was said above, we obtain a large surface heating in the NLTE H-He models? 
This was indeed a big surprise when the effect was first discovered by Auer 
and Mihalas (1969), who have also provided its physical explanation. The 
effect is related, but not equivalent, to another, previously discovered NLTE 
surface temperature rise, called the Cayrel mechanism (Cayrel 1963). 

The explanation of the Auer-Mihalas temperature rise goes as follows: 
It is true that  lines always cause a surface cooling. However, in NLTE, a 
line radiation also influences the atomic level populations. From Sect. 3.1 we 
know that  the main effect of line transfer is to overpopulate the lower level of 
a line transition. Considering Lyman and Balmer lines thus gives rise to an 
overpopulation of the hydrogen n -- 1 and n -- 2 states, and consequently to 
increasing the efficiency of the Lyman and Balmer continua. Since they are 
heating continua, this leads to an additional heating at the surface. There 
is a competition between this heating and traditional surface cooling caused 
by the Lyman and Balmer lines, but in the present case the indirect heating 
wins. 

However, interesting as it may be from the theoretical point of view, the 
indirect heating due to the hydrogen (and to a lesser extent the He II) lines 
is in reality usually wiped out by the effect of metal lines (as it is in the 
case displayed in Fig. 6). Nevertheless, the Auer-Mihalas heating survives for 
metal-poor atmospheres, where it may give rise to observable effects in the 
hydrogen line profiles (e.g. for hot DA white dwarfs - see Lanz and Hubeny 
1995 for a discussion and original references). 

Finally, I stress that  the behavior of temperature at the surface should 
not be overinterpreted. It only influences observed spectrum features which 
correspond to the strongest opacity sources, like the very cores of strongest 
lines (e.g. the C IV resonance lines in the present case). Yet, these features 
may in reality be more influenced by a stellar wind, which is neglected in 
the hydrostatic models anyway. Therefore, the most important effect of line 
blanketing is its influence on temperature in the deeper layers. 
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6 U s i n g  M o d e l  A t m o s p h e r e s  

t o  A n a l y s e  O b s e r v e d  S p e c t r a  

So far, we have been mostly concerned with the question of how the model 
stellar atmospheres are constructed. In this chapter, we will discuss another, 
and equally important, question of how these models are used to address 
general astrophysical questions. 

6.1 A Scheme of  Spectroscopic Diagnostics 

As was stated before, the observed spectrum is practically the only informa- 
tion about a star we have. The process of deducing stellar properties from 
its spectrum is therefore called spectroscopic diagnostics. This is a multi-step 
process with many interlinked steps. It is schematically displayed in Fig. 7. 

The basic step is INPUT PHYSICS. By this term we mean a selection of 
the basic physical assumptions under which the medium is being described 
(i.e., which processes and phenomena are neglected; which equilibrium con- 
ditions are assumed to hold, etc.). The basic assumptions then determine the 
equations to be solved. They also tell us what are the basic input parameters 
of the model construction. For instance, when adopting the assumption of a 
plane-parallel atmosphere in the hydrostatic and radiative equilibrium, the 
input model parameters are the effective temperature, surface gravity, and 
chemical composition. These parameters are "basic" from the point of con- 
structing model atmospheres, yet they are related to other parameters which 
may be viewed as more fundamental, like stellar mass, radius, and luminosity. 
The latter parameters are fundamental if one considers a certain instant of 
the stellar life. Yet, taking into account more extended input physics (i.e., 
adding the stellar evolution theory), we may then consider even more funda- 
mental parameters like the initial stellar mass, initial composition, and the 
age. 

Likewise, going to more complex models, like for instance the unified 
photosphere-wind models, we have different input parameters depending on 
the level of physical description we adopt. In a simple theory we have, in 
addition to the stellar mass, radius, and luminosity, two additional input 
parameters - the mass loss rate and the wind terminal velocity (see Lamers, 
this Volume). Yet, in a more involved physical picture we may come up with 
a relation between the wind parameters and other parameters. 

Sometimes the additional input parameters make up for the lack of ad- 
equate physics. Typical examples are the so-called microturbulent velocity 
which is often used for describing short-scale non-thermal motions; or the 
mixing length parameter used in the mixing-length theory of convection. An 
example from a somewhat different yet related field is the a-parameter for 
describing a turbulent viscous dissipation in accretion disks. All such input 
parameters are convenient parameters which allow us to construct models 
even if we do not really know what is going on. Their values are constrained 



58 I. Hubeny 

by agreement between theoretical predictions and observations; it is gener- 
ally believed that  a more fundamental  physics will either determine their 
values from other structural parameters,  or will get rid of them completely. 
Nevertheless, there are cases where such parameters are very useful, for in- 
stance when a "better physics" would require an enormously complicated and 
time-consuming modeling. 

The input physics, which tells us which equations are to be solved, thus 
influences profoundly the next step, NUMERICS. By this term we understand 
all the work necessary to develop a code for computing model stellar atmo- 
spheres. This involves adopting appropriate methods provided by numerical 
mathematics  or, often, developing new methods suited to a particular mod- 
eling purpose (a good example being the ALI method).  This also involves 
a lot of computer  programming and, the most time-consuming part,  code 
debugging and testing. 

Having developed a stellar atmosphere code, one may proceed to the n e x t  
step, M O D E L  ATMOSPHERES. It is depicted in Fig. 7 as a distinct step from 
numerics, despite the fact that  it could have been a part  of the Numerics 
box. Usually, a stellar atmosphere code contains a large number of various 
numerical options and tricks. One usually needs a lot of experience to cope 
successfully with various numerical problems (typically a slow convergence 
or divergence of iterations), and to find proper options to coax the code to 
work. Sometimes the author of the code builds a grid of models him or herself 
(typical example being Bob Kurucz), but it is still useful that  a code itself is 
being available to the whole community. This is because the number of inter- 
nal input parameters may be enormous to make it reasonable to construct a 
sufficiently dense, all-purpose grid. Many codes for stellar atmospheric mod- 
eling are indeed publicly available. 

The last step of the "theoretical" branch of the spectroscopic diagnostic 
procedure is spectrum synthesis, which yields the main product, the SYN- 

THETIC SPECTRUM. It will be discussed in detail in the next section. 
It should be realized that not all of the above steps have to be done 

in analyzing a particular object. One may work, for instance, with a pre- 
calculated grid of model atmospheres and construct only synthetic spectra. 
One may even work with an existing grid of synthetic spectra; one then avoids 
the theoretical part  completely. 

I will not discuss the other, "observational", branch of diagnostics. The 
main steps are taking the rough data (by ground-based or space-based in- 
struments) - the step OBSERVATIONS - and subsequent DATA REDUCTIONS. 
The final product is a well-calibrated OBSERVED SPECTRUM. 

Now comes the crucial part of the spectroscopic diagnostics, the COM- 

1 The most extended collection of existing modeling codes is maintained on the 
CCP7 (Collaborative Computer Project No. 7 on the Analysis of Astronomical 
Spectra) library - Jeffery (1992). The library is also available via WWW on the 
address http://star.arm.ac.uk/ccp7/ 
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INPUT PHYSICS 
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Fig.  7. A sketch of the individual steps of astrophysical spectroscopic diag- 
nostics and their interconnections 
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PAI~ISON of the observed and theoretical spectra. The actual procedure to be 
performed in this step is discussed in detail in Sect. 6.3. Here, I will only stress 
the significance of this step in the global context. Above all, the comparison 
determines the values of basic input parameters. One may proceed iteratively: 
after an initial guess of input parameters and constructing the first synthetic 
spectrum, the comparison step suggests new values of basic input parame- 
ters, which axe then used for constructing a new model atmosphere and new 
synthetic spectrum, and the process is repeated. Alternatively, one may first 
construct a grid of synthetic spectra around the most probable values of basic 
parameters, and to determine their final values by some sort of X2-fitting. 

However, the most important point to realize is that the comparison step 
does not merely serve to determine values of model input parameters. It may 
happen that we are not able to match observations for any combination of 
input parameters. Then we have to go back to the input physics step, and re- 
vise the basic physical assumption under which the models were constructed. 
This may of course lead to a revision (or even to a rewriting) of the computer 
program and consequently to reconstructing the model grid. But by this con- 
nection we actually learn the most important part of all - the physics. 

In Fig. 7, the dashed line drawn from the comparisons step to the nu- 
merics step is meant to indicate that lack of agreement between observations 
and theory does not have to be caused by an inadequacy of adopted physical 
description, but also by an inadequate numerical treatment of otherwise cor- 
rect equations. The most trivial example of this phenomenon is a hidden bug 
in the program, which does not influence the results in some cases (usually 
those used for testing), but may have a dramatic effect in others. Also, this 
may indicate an insufficient accuracy or inadequacy of adopted numerical 
method(s) for solving a given set of equations, for inverting matrices, etc. 
Another example are various numerical approximations for atomic param- 
eters. (e.g. polynomial expansions for transition cross-section or collisional 
rates, which are derived for a certain parameter range, but are not applicable 
for others, etc., etc.) 

Finally, an unsuccessful match of observations and theory may reveal 
that the observations are at fault. For instance, an UV spectrum of a star 
may be contaminated by a contribution from a close object not seen in the 
optical region. Also, the data reduction step may be at fault - for instance a 
persistent mismatch of observations and models for various objects may lead 
to a discovery of an error in flatfield corrections, or an unexpected presence 
of scattered light in the spectrograph, etc. 

6.2 Spectrum Synthesis 

Ideally, there should be a one-to-one correspondence between a model at- 
mosphere (the structure), and the synthetic spectrum. In other words, to 
every model atmosphere there should correspond a unique emergent spec- 
trum. However, in the real life the model structure is always computed using 
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a simplified treatment of chemical species - some of them do not influence 
the atmospheric structure significantly and are therefore omitted (like, for 
instance, Li, etc.), or are treated in a simplified way when constructing the 
model. 

However, one needs to include all the opacity sources available, lines and 
continua, when producing the synthetic spectrum. One can easily afford that. 
Since the temperature, electron density, and atomic level populations are 
specified by the model, the calculation of the synthetic spectrum consists of 
a simple wavelength-by-wavelength formal solution of the radiative transfer 
equation, with the absorption and emission coefficients given by (141) and 
(142). However, the summation over line transitions may actually include 
hundreds or even thousands of individual spectral lines contributing at a 
single wavelength point. This feature, and the very fact that we have to 
deal with literally millions of lines, make an efficient coding of this problem 
non-trivial. The most widely used general purpose codes of this kind are 
SYNTHE (Kurucz 1994), which is designed to produce spectra for Kurucz 
model atmospheres; and SYNSPEC (Hubeny et al. 1994), which calculates 
spectra for NLTE models created by TLUSTY, but works for Kurucz models 
as well. 

Another important point: an input model atmosphere is constructed as- 
suming certain abundances of chemical species. In order to be strictly con- 
sistent, one would have to consider the same abundances in the spectrum 
synthesis as well. However, due to the same reasons as put forward above, it 
is permissible to use different abundances in the spectrum synthesis step. It is 
clear that for "unimportant" species, one may change their abundance to any 
reasonable value. However, one should be careful with changing abundances 
of "important" species, like He, C, N, O, etc, significantly. If this is done, it is 
recommended to recalculate a full model atmosphere using these new values 
of abundances. This will not only show whether the previous approach was 
reasonably accurate, but also the new model may subsequently be used for a 
fine tuning of abundances. 

It should be realized that the calculation of the final synthetic spectrum 
to be compared to observations involves two steps: 

1. producing the net emergent spectrum (radiation flux at the stellar sur- 
face) as discussed above; and 

2. performing a convolution with rotational and/or instrumental broaden- 
ing. 

Since a star generally rotates, one has to add contributions from all sur- 
face elements taking into account the Doppler shift due to the local projected 
rotational velocity. This procedure is described in detail for instance in Gray 
(1992). If one assumes a certain a priori given limb-darkening law (i.e. the 
dependence of specific intensity on #), one may perform the rotational convo- 
lution with the radiation flux; otherwise, the rotational convolution needs a 
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specification of radiation intensities. The procedure is easy for well-behaving, 
spherically-symmetric stars. However, one may face complications either be- 
cause of non-sphericity (for instance that implied by extremely fast rotation), 
or by departures from surface homogeneity (various starspots, etc.), or for a 
complicated pattern of velocity fields at the stellar surface (non-radial pulsa- 
tions, macroturbulence, etc.). 

Finally, to be able to compare the predicted spectrum to observations, one 
has to reproduce numerically a conversion of the incoming stellar spectrum 
by the spectrograph. In practice, this usually means accounting for a finite 
spectrum resolution of a spectrograph by convolving the net spectrum with 
a known instrumental broadening function (usually a Gaussian with a given 
FWHM). One can also include an instrumental spectrum sensitivity function 
at this stage. The final result of this step is a predicted spectrum which is 
directly comparable to the observed one. 

6.3 Spectrum Fitting 

The spectrum fitting is the procedure of finding the model spectrum that fits 
the observed spectrum best. It may be done by two different ways: 

i) a "consecutive model construction" procedure, which consists of a) 
computing first a small number of initial models for some initial estimates of 
the basic parameters; b) finding the next estimate of basic model parameters 
(either by an educated guess, or by using more sophisticated mathematical 
techniques - for instance the Amoeba optimized search package - Press et 
al. 1986), and comparing the resulting spectra to observations. The process 
is repeated until the criteria for a successful match are satisfied. The basic 
characteristics of this approach is that one does not need any precalculated 
grid of models; instead, the models are calculated on the way of getting closer 
and closer to the final model. Obviously, this procedure is efficient only if an 
effort to generate a model spectrum from scratch is reasonably small. 

ii) a "grid-fitting" procedure, which consists in having a precalculated grid 
of spectra, and finding a model which produces the best fit. One may either 
find the best-fit model (i.e. one of the models of the grid), or find the best-fit 
parameters by interpolating in the model grid, assuming that the synthetic 
spectra corresponding to model parameters in between the grid values may 
be approximated by an interpolation of tabulated model spectra. If the grid 
has a sufficiently small step in basic stellar parameters, this procedure is quite 
satisfactory. 

Let us take an example of determining basic stellar parameters for OB 
stars from observed hydrogen and helium lines. Let us further assume that 
the mass loss rate is sufficiently low so that all the observed lines originate 
in the stellar photosphere, i.e. their profiles may be interpreted by means of 
hydrostatic model atmospheres. Finally, let us assume that we are fitting the 
observed spectra by means of simple H-He model atmospheres. This means 
that the grid of spectra depends on five input parameters: Tefr, logg, Y (the 
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helium abundance), vtb (microturbulent velocity), and vs in i  (projected ro- 
tational velocity; i being the inclination of the rotation axis with respect to 
the direction to the observer). One may either determine all five of them by 
a X~-fitting, or to determine some of them independently, and to fit only a 
subset of parameters. A typical case for OB main-sequence stars is to deter- 
mine Vtb and v sin i from metal lines, and to determine the three remaining 
parameters by a line profile fitting. Sometimes, even Y may be determined 
independently (from profiles or equivalent widths of lines of the dominant ion 
of helium for which the profiles are not so sensitive to T~fr and logg). One 
is then left with fitting the observed hydrogen and helium line profiles with 
only a 2-dimensional grid of spectra which depend only on T~fr and logg. 

There are two options to perform the actual fitting: 

a) fitting both parameters simultaneously; or 

b) using the fit diagrams. This consists in keeping one parameter fixed (typ- 
ically log g), and finding such a value of Tef~ which fits the observed profile 
best. One then goes to the next grid value of logg, and repeats the fitting. 
Every fitted spectral line then defines a curve in the T~fr-logg plane, on which 
the best-fit values of Tefr and log g are located. Ideally, all curves should in- 
tersect in one single point, which then determines the overall best fit values 
of Tefr and logg. In reality, one usually does not get such a good fit, but 
at least one should obtain a relatively small region in the Tefr-logg plane 
where the curves intersect. If one single spectral line defines a significantly 
different fit curve, it is a strong indication that  something on the theoretical 
or observational level was incorrect. 

The fit diagram method is illustrated on the following example: I have 
constructed a grid of NLTE H-He model atmospheres with effective temper- 
atures between 25000 and 45000 K, in steps of 2500 K, and for logg between 
3.5 to 4.5, in steps of 0.25. All models have a solar abundance of helium. 
I will not fit an actual observed spectrum; instead, I will pretend that  the 
"observed" spectrum is the synthetic spectrum computed for a fully metal 
line-blanketed NLTE model for Teff = 35 000 K, and logg = 4. 

This example will illustrate two features; namely i) what the fit diagrams 
look like, and ii) what error one makes if the spectrum is fitted by simple H- 
He model atmospheres instead of by line-blanketed models. The fit diagram 
for H, He I and He II lines is shown in Fig. 8. A very interesting result 
is that  the H-He models would determine the best fit parameters Tefr 
38000 K, and logg ~ 4. In other words, the H-He models will overestimate 
the deduced effective temperature, which is not surprising in view of the 
discussion presented in Sect. 5.5, namely that  the local temperature in the 
H-He models in regions where H and He lines are formed is lower than in the 
line-blanketed models (no backwarming). 
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Fig. 8. A fit diagram for fitting the H, He I, He II line profiles by means 
of NLTE H-He model atmospheres. The "observed" spectrum is in fact a 
synthetic spectrum computed for a fully metal line-blanketed NLTE model 
for T~fr -- 35000 K, and logg = 4. Squares: hydrogen lines (H/3 to HS); 
triangles: He I lines (AA 4388, 4471, 4922 /~); stars: He II lines (hA 4026, 
4200, 4542, 4686 i )  

6.4 D e t e r m i n a t i o n  of  F u n d a m e n t a l  Stel lar  Pa rame te r s  

Here we will only be concerned with the question how the fundamental stellar 
parameters are determined from a photospheric analysis, i.e. by analyzing the 
observed stellar spectrum by means of hydrostatic model atmospheres. An 
important part of this procedure, which is nevertheless often forgotten, is 
to verify that the deduced stellar properties are indeed consistent with the 
assumption of hydrostatic equilibrium. 

The fundamental stellar parameters to be determined are the stellar mass, 
M., radius, R., and luminosity, L.. In general, we do not know the distance 
to the star, d, so we add this quantity to the list, even if it does not represent 
an intrinsic stellar property. (There are, obviously, other fundamental stellar 
parameters, like the chemical composition, rotational velocity, etc. For the 
purposes of this section, we assume that they are determined independently 
of the four fundamental parameters listed above.) 
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The parameters which we determine directly from observations are the 
effective temperature, Teff, and surface gravity, g. In addition, we have the 
measured magnitude, mobs that  reflects the whole observationally accessible 
wavelength range. If the flux in the unobservable region is negligible, then this 
magnitude represent the total, bolometric, magnitude, mbol. If not, one has to 
apply the bolometric correction, which follows from the model atmosphere. 

In any case, we end up with three "measured" quantities, Teff, g, and 
mbol, but we have 4 unknown fundamental parameters, M.,  R. ,  L. ,  and d. 
The governing relations between them are 

~T:~ = L./(4~R~.) , (156) 

g -- GM,/R2, , (157) 

L. -- L. [mbol (mobs, Teff), d] , (158) 

The last relation expresses the conversion of the observed magnitude to the 
stellar luminosity. 

We thus have three relations for four unknowns. In fact, in some cases 
the stellar evolution theory may supply an independent additional relation 
between the fundamental parameters, for instance the mass-radius relation 
for white dwarfs (Hamada and Salpeter 1961), or the mass-luminosity rela- 
tion for central stars of planetary nebulae (Paczynski 1971). However, in the 
general situation we do not have such a relation, and even if we do we may 
want to check the theoretically predicted relations observationally. 

Therefore, from the photospheric analysis only, one cannot derive all four 
parameters simultaneously. This is easily understood from the physical point 
of view. A plane-parallel hydrostatic atmosphere is just a thin layer sitting 
on the top of a spherical star. The only information about a dimension of the 
underlying star is contained in the surface gravity g which depends also on 
the stellar mass. Since the atmosphere is thin, the emergent spectrum does 
not carry any independent information about the atmospheric extent. 

To remove the radius-mass degeneracy, we need either independent geo- 
metrical information (knowing the radius or the distance), or an independent 
knowledge of the mass. The typical situation is that  we know the distance d 
(the situation will be significantly improved when Hipparcos parallaxes are 
released); then the other parameters are determined as follows: 

1. from known mobs and d (and, possibly, Teer), we determine the absolute 
bolometric magnitude, Mbol and, therefore, luminosity, L. ; 

2. from L. and Tefr, we determine R.; 
3. from R,  and g, we determine mass iV/. 

As it turns out, if the mass of early-type O stars is determined in this way 
(which is called the spectroscopic mass), and if the mass is also determined 
by comparing the evolutionary tracks and the position of the star in the H-R 
diagram (the so-called evolutionary mass), one finds a significant discrepancy 



66 I.Hubeny 

(e.g. Herrero et al. 1992). The sense of discrepancy is that  the spectroscopic 
masses are systematically lower than the evolutionary masses. The discrep- 
ancy arises either by inaccuracies of the stellar atmospheres theory, or the 
stellar evolution theory, or, most likely both. From the stellar atmospheres 
side, there has been a recent progress in understanding the reasons for the 
discrepancy (e.g. Lanz et al. 1996). However, the problem is not yet solved, 
and presents a challenge for future research. 
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Abs t r ac t .  We describe the basic theory of stellar winds with momentum input 
due to a force or with energy input and we formulate the five laws of stellar winds. 

Stellar winds can be driven by various mechanisms, specified by the main force 
that is responsible for the wind. These are: 
(1) Coronal winds, driven by gas pressure at high temperature 
(2) Line driven winds, due to radiation pressure in spectral lines 
(3) Dust driven winds, due to radiation pressure on dust 
(4) Pulsation driven winds, due to oscillating motions of the photosphere 
(5) Sound wave driven winds, due to wave pressure of acoustic waves 
(6) Alfv6n wave driven winds, due to wave pressure by Alfv~n waves 
(7) Magnetic rotating winds, due to magnetic corotation 
We briefly review these mechanisms. 

1 I n t r o d u c t i o n  

Most stars are loosing mass in the form of a stellar wind. The mass loss 
rate of  the sun is about  10 -14 M o y r  -1 . This is such a small amount  tha t  it 
does not affect the evolution. The mass loss by the solar wind is even smaller 
than the mass loss rate in the interior of the sun due to the nuclear fusion: 
Mnud = L/c 2. However in a later evolutionary phase low mass stars suffer 
much higher mass loss rates up to about  10 -5 M o y r  -1 when they reach the 
Asymptot ic  Giant  Branch. The late evolution of low mass stars is dominated 
by mass loss. 

Massive stars with M ~ 30M O experience significant mass loss already 
on the main sequence. The typical mass loss rates of O stars during the main 
sequence is about  10 -6 to 10 -5 M o y r  -1 . For those stars the whole evolution 
is seriously affected by mass loss. 

Stellar winds can have very different forms: 
(1): cold (T  ~ T,), slow (v < <  ves¢) and dense for late-type supergiant  stars 
(2): cold (T ~ T,),  fast (v ~ vest) and dense for luminous hot stars 
(3): hot (T > >  T.) ,  fast (v ~ ves¢) and teneous around cool dwarfs and 
giants. 
This shows that  there are different mechanisms which produce these winds. At 
least seven different mechanisms have been proposed to explain the observed 
properties of stellar winds in different types of stars. They are listed in the 
abstract .  
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The two most important theories for mass loss are the "dust driven wind 
theory" and the "line driven wind theory". In both theories the wind is 
driven by radiation pressure. These theories are important because they are 
successful in explaining the gross properties of the observed winds in the two 
evolutionary phases with the highest mass loss rates: the cool luminous stars 
and the hot luminous stars. These two theories will be discussed in some 
detail in two chapters in this volume. 

The main emphasis of this paper is on explaining the basic physical prin- 
ciples of stellar wind theories. We first discuss the theory of isothermal winds 
without extra forces other than the one due to the gas pressure gradient. 
We show that for a wind with a given density at its lower boundary, the 
velocity law and the mass loss rate are fixed by the condition that the wind 
should start subsonic at the photosphere and reach supersonic velocities fur- 
ther outwards. Then we describe the effects of momentum input (due to an 
extra outward force) and energy input (due to heating) on the structure of 
a stellar wind and on its mass loss rate. These principles hold for (almost) 
all wind theories. We show the results of forces acting at different distances 
in the wind. Based on these results we formulate the five laws of stellar wind 
theories. In the last section we briefly review the different wind theories. 

An extensive discussion of the theories and observations of stellar winds 
will be published in Introduction to Stellar Winds by H.J.G.L.M. Lamers and 
J.P. Cassinelli (Cambridge University Press), in preparation. 

2 B a s i c  C o n c e p t s  o f  W i n d  T h e o r i e s  

2.1 T h e  Mass  Con t inu i t y  E q u a t i o n  

For a time-independent stellar wind with a constant mass loss rate, the 
amount of gas passing through any sphere of radius r is constant. This is 
expressed in the equation o f  mass conservation 

1(4 = 4zrr2 p(r )v(r )  . (1) 

Differentiation of this equation gives 

1 dv 1 dp 2 
- ( 2 )  

v dr p dr r 

2.2 T h e  M o m e n t u m  E q u a t i o n  

The motion of the gas in a stellar wind is described by Newton's law F = rn.a 
or F = p .dv /d t  if F is the force per unit volume and f -- F / p  is the force 
per unit mass. The velocity gradient in Newton's law is 

dv(r,t) dr(t) dv 
a t  - + d---/- - " ( Z )  
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In a stationary wind 5v(r, t ) /6t  = O. The equation of motion or the momentum 
equation in a wind is 

dv 1 dp G M,  
V - -  - -  dr p dr r 2 + f ( r )  . (4) 

The first term is the force due to the gradient of the gas pressure. This 
force is directed outwards (positive) because dp/dr < 0. The second term is 
the inward directed gravity and the third term describes any extra outward 
directed force. 

2.3 T h e  E n e r g y  E q u a t i o n  

The gas pressure gradient depends on the temperature structure of the wind, 
which depends on the heat input and cooling by expansion. The first law of 
thermodynamics states that 

dQ du , dp-1 
dt - dt  * P  (5) 

where Q is the heat energy per gram, and u = (3~2)(TOT~#) is the internal 
energy for an ideal gas with mean particle weight #mH. The gas pressure 
for an ideal gas is p = pT'iT/#. For a stationary wind the time derivative is 
d/dt  = v d/dr.  Define q(r) = dQ/dr  as the heat input (positive) or heat loss 
(negative) per gram per cm in the wind, then the energy equation becomes 

3 7~ dT dp-1 
q- -  21~ dr + p dr (6) 

By substituting pd( i /p )dr  = d (p /p ) /dr  - (1 /p)dp/dr  with the ideal gas law 
we find 

t dp _ 5 ~ dT  
p dr 2 # dr q(r) . (7) 

Combining (4) and (7) gives the energy equation of stellar winds 

d { v 2 5 T~T GM.  } _.= f ( r ) +  q(r) (8) 
d-7 7 + 2  u --7- 

This equation states that the change in energy of the gas as it moves 1 cm 
outwards is equal to the momentum input by the force and the heat input. 
The first left hand term is the kinetic energy of the flow, the second term is 
the enthalpy of the gas (the internal kinetic energy plus the capacity to do 
work) and the third term is the potential energy. 

This energy equation can also be written in the integral form 

fr v 2 5 TET GM,  = e(r0) + f ( r )d r  + q(r)dr (9) 
e(r)  =- 2 -  + 2 ~ - - 7 -  o o 
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where r0 is some arbitrarily chosen lower limit. 
Compare the energy of the wind just above the photosphere and at co. In 

or just  above the photosphere the potential energy is much larger than the 
enthalpy and the kinetic energy because for a normal star vest > > TgT./# and 
v(R.)  < <  vest so the total energy is e(ro) ~ - G M . / r o ,  which is negative. 
At large distance r -+ co the potential energy and the enthalpy both go to 
0, so the total energy is the kinetic energy. This means that 

- - i f -  ~ - R----f- "~" f ( r ) d r  + q(r)dr  . (10) 

We see that  a stellar wind can only escape i f  there is an outward force 
that provides suff icient  m o m e n t u m  input or an energy source that provides 
suf f icient  heat input f o r  the wind to escape the potential  well. 

3 I s o t h e r m a l  W i n d s  D r i v e n  b y  G a s  P r e s s u r e  

Let us first consider an isothermal stellar wind. Such a wind obviously requires 
energy input, otherwise the gas would cool as it expands adiabatically. If the 
wind is isothermal, we do not have to worry about the energy equation and we 
can concentrate on the momentum equation and the resulting flow velocity. 
If there is no extra force, the wind is driven by gas pressure only. This is the 
case for the solar wind from the hot corona. Winds driven by gas pressure 
produce only small mass loss rates and are not important  for stellar evolution. 
However, their theory gives insight into some of the basic physical principles 
of stellar wind theories. 

3.1 T h e  C r i t i c a l  P o i n t  o f  t h e  M o m e n t u m  E q u a t i o n  

The momentum equation of an isothermal wind with gas pressure only is 

dv 1 dp G M .  (11) 
v dr - p dr r 2 

In an isothermal wind consisting of an ideal gas of temperature T the force 
due to the pressure gradient can be written as 

p dr - # dr + . . . .  Igp dr \ ~ - J  p dr (12) 

The density gradient can be expressed in a velocity gradient by (2). Substi- 
tut ing (2) and (12) into  (11) yields 

v d-7 - / - ( 1 3 )  

with 
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a "- ( n T / # )  1/2 (14) 

is the isothermal speed of sound, which is constant in an isothermal wind. 
The lower boundary condition of (13) is the bottom of the isothermal region, 
located at r0 where v(r0) = v0. In general r0 is about the photospheric radius 
or a bit larger if the star is surrounded by an isothermal corona. 

The momentum equation (13) has a singularity at the point where v(r) = 
a. We will show below that this singularity is extremely important ,  because 
it implies that the mass loss rate is fixed. 

The numerator goes to 0 at a distance 

r -- r¢ - G M . / 2 a  2 . (15) 

This is the cri t ical  distance,  or the distance of the cri t ical  point .  The velocity 
gradient at the critical distance will be zero, because the numerator  equals 
zero, unless v(rc) = a. Similarly, the velocity gradient at the distance where 
v -- a will be :t=c~, because the denominator -= 0, unless r = rc when v = a. So 
the only solution which can have a positive velocity gradient at all distances 
is the one that goes through the critical point. This is the cr i t ica l  so lu t ion  

for which 

v(rc) = a at 

So we find that at the critical point 

G M .  
r= = 2a ~ (16) 

vest(to) (17) 
v(rc)  = a -- 2 

where vese(r¢) : v / 2 G M , / r c  is the escape velocity at the critical point. The 
point in the wind where v(r) = a is called the son ic  point .  In an isothermal 
wind the critical point coincides with the sonic point, but this is not neces- 
sarily true for other wind models. The critical solution is transonic, because 
it starts subsonic at small distances and reaches a supersonic velocity at large 
distances. 

The topology of the solutions of (13) is shown in Fig. 1 for various initial 
velocities v(ro) .  Notice that only one solution (thick line) starts subsonic and 
ends supersonic. 

The slope of the velocity law through the critical point can be derived by 
applying de l 'Hopital 's rule which states that  the right hand side of a critical 
equation like (13) is equal to the quotient of the derivatives of the numerator  
and the denominator. (This can be proven by expressing both factors as a 
series around their zero point: f ( r )  = f ( r c ) +  ( r - r c ) . ( d f / d r ) c ) .  De l 'nopi ta l ' s  
rule results in 

; ,.o=l J/1 dr J,.o=r kdr/,.o (18) 



74 Henny J.G.L.M. Lamers 

2-'OLUT;ONS 3F -:4E ViOMENTUM EQUATION 
~ L  

"7" ,t 

0 1 

1 

3 * 5 
r / r (  c rit ) 

Fig.  1. Different types of solutions of the momentum equation for an isother- 
mal wind with gas pressure only. For this particular case rc is at 5 r0. The 
thick line passes through the critical point. It is the only transonic solution 

This gives 

d r )  :t=2a 3 

~r ro = GM.  (19) 

The positive or negative sign is a result of the fact that  de l 'Hopital 's rule gives 
an expression for (dr/dr) 2. For a wind with an outward increasing velocity 
we obviously chose the positive gradient. 

This discussion has shown that  there is only one solution which starts 
subsonic and ends supersonic. This critical solution occurs for only one par- 
ticular value of the velocity at the lower boundary: v0 (crit). This implies that  
an isothermal envelope with given density Po at its bot tom can only produce 
a transonic wind if 

1~I - 4~rr2 povo(crit ) . (20) 

This is a very impor tant  result which shows that  an isothermal wind with a 
given lower boundary (pe, To and gravity) can reach supersonic velocities for 
only one specific value of the mass loss rate/ 
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3.2 T h e  V e l o c i t y  L a w  o f  I s o t h e r m a l  W i n d s  
D r i v e n  b y  G a s  P r e s s u r e  

The m o m e n t u m  equation (13) has an analytic solution 

v 2 GM. 
- - - a  2 ln(v) = 2 a  2 l n ( r ) +  + cons tan t .  (21) 
2 r 

The constant is fixed by the condition v(r~) = a at the critical point. This 
gives an expression for the velocity law of an isothermal wind driven by gas 
pressure only 

vexp - ~  = a  - r + (22) 

with rc = GM./2a 2. This velocity law is shown in Fig. 2. 

The initial velocity at the lower boundary of the isothermal region can 
be derived by applying (22) at r0. At the bo t tom of a gravitationally bound 
subsonic wind with v0 << a < ves¢ one finds 

rc 2re 3 
vo m a exp - + 

r0 

a(Ves~-f°))2 { v2sc(r°) + 3} 
= exp 2a ~ 

Equation (22) can also be written as 

(23) 

exp = exp - (24) 

At large distances where r >> r0, the velocity taw approaches 

v(r ~ cx~) ~ 2av/-~(r/ro) , (25) 

which increases infinitely. This is a consequence of the assumption tha t  the 
wind is isothermal up to very large distances. It  requires the continuous 
addition of energy and the resulting gas pressure then accelerates the wind 
indefinitely. Clearly this is an unrealistic situation. In reality the winds are 
approximate ly  isothermal only up to a certain distance and the velocity does 
not increase beyond that  distance. 
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THE VELOCITY ANO DENSITY OISTRIBUTION 

II 

- 1 0  

0.0 0.5 t .0 1 .S 2.0 
log r / r  a 

Fig. 2. The top part of the figure shows the velocity law, in terms of 
Mach-number (M = v/a) for an isothermal wind as a function of distance 
normalized to the lower boundary of the isothermal region ?0. The location of 
the critical point is indicated by a dot. The lower part shows the logarithmic 
density distribution of the wind normalized to the density at r0 (full line). 
The dashed line shows the density distribution of a hydrostatic atmosphere 
with the same temperature. The two density distributions are very similar in 
the subsonic part of the wind. The difference at the critical point is only a 
factor e -°'s 

3.3 T h e  D e n s i t y  S t r u c t u r e  o f  I s o t h e r m a l  W i n d s  
D r i v e n  b y  Gas  P r e s s u r e  

The density structure is given by the mass continuity equation (1) and the 
velocity law (22) which yields 

po \ a;r  ] J 
This equation can be solved numerically to give p(r) /po.  The result is shown 
in Fig. 2 for a wind with a temperature such that  a 2 = O.05GM./ro ,  which 
implies a critical point at rc = 10r0. Let us now compare this with the density 
distribution of a hydrostatic atmosphere. 

In a static atmosphere the density is given by the hydrostatic equation 

_ _ _  G M ,  1@+ r2 =°  (27) 
p dr 

which transforms, with (12), into 

r 2 dp G M .  
p dr - a 2 (28) 
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if the atmosphere is isothermal. The solution is 

P(r) = e X p P 0  ( -  GM,a ----7 ( 1  - ~ ) }  = exp { (r-r0)7/0 r0}r (29) 

where 

7/0 = T4T/#go with go = GM,/r~ (30) 

is the density scale height at the bottom of the isothermal region. 
The density structure (29) of the hydrostatic region is very similar to that 

of an isothermal wind. In fact, (29) is equal to (26) at the bottom of a wind 
if v0 is highly subsonic. The difference at the critical or sonic point is exactly 
a factor exp (-0.5) because vopor~ = ap(rc)r2c. 

The close agreement between the hydrostatic and wind density structure 
in the subsonic region where v £ 0.5a is due to the fact that the term vdv/dr 
in the momentum equation (4) is much smaller than the pressure gradient 
term. In other words: the structure of the subsonic region is mainly determined 
by the hydrostatic density structure and not by the velocity law~ 

3.4 T h e  Mass  Loss R a t e  o f  I s o t h e r m a l  W i n d s  
D r i v e n  by  Gas  P r e s s u r e  

The mass loss rate of an isothermal wind driven by gas pressure follows from 
the equation of mass continuity at either the lower boundary or at the critical 
point. 

/~/_- 4~rr02p0v0 = 4rrr2cpca . (31) 

This gives 

o 
r c - r 0 )  ro 

5t~0 Pc 

+ (32) 

Estimates of the mass loss for a few characteristic stars are given in Ta- 
ble 1. Notice the extreme sensitivity of the mass loss rate to the height of the 
critical point in terms of the pressure scale height (column 8) because the 
density at the critical point decreases exponentially as as (re - r0)/7/0. The 
predicted mass toss rate of a solar type star with a corona of 1 x 106 K and 
P0 -- 10 -14 g c m  -3 is 1.6 x 10 -14 M O yr -1. This is in reasonable agreement 
with the observed rate of 2 × 10-14Moyr -1. 



78 Henny J.G.L.M. Lamers 

T a b l e  1. Characteristics of isothermal winds with a density at the lower 
boundary of p0 = 10 -14 g / c m  3 

M. R. vesc 
(5//0) ( R O ) ( k m / s )  

1 1 617.5 

1 100 61.7 

10 10 617.5 

10 1000 61.7 

T a 7i0 rc rc - R.  M 
(K) (km/s)  (R,)  (R,)  7to (M®/yr)  

1.10 ~ 37.2 7.3 10 -3 68.7 9.3 103 1.2 10 -6s 
3.105 64.5 2.2 10 -2  22.9 1.0 103 1.5 10 -2s 
1.106 117.7 7.3 10 -~ 6.9 8.0 101 1.6 10 -14 
3.106 203.9 2.2 10 -1 2.3 5.9 8.2 10 -1t  
5.106 263.2 3.6 10 -1 1.4 1.1 4.0 10 -1° 

3.103 6.4 2.2 10 -2 22.9 1.0 103 1.5 10 -25 
1.104 11.8 7.3 10 -2 6.9 8.1 101 1.6 10 -11 
3.104 20.4 2.2 10 -1 2.3 5.9 8.2 10 - s  
5.104 26.3 3.6 10 -1 1.4 1.1 4.0 10 -7  

1.10 ~ 37.2 7.3 10 -3  68.7 9.3 103 1.2 10 -66 
3.105 64.5 2.2 10 -2 22.9 1.0 103 1.5 10 -26 
1.106 117.7 7.3 10 -2 6.9 8.0 101 1.6 10 -12 
3.106 203.9 2.2 10 -1 2.3 5.9 8.2 10 -9 
5.106 263.2 3.6 10 -1 1.4 1.1 4.0 10 - s  

3.103 6.4 2.2 10 -2 22.9 1.0 103 1.5 10 -23 
1.104 11.8 7 .3  10 -2 6.9 8.1 101 1.6 10 -9 
3.104 20.4 2.2 10 -1 2.3 5.9 8.2 10 -6 
5.104 26.3 3.6 10 -1 1.4 1.1 4.0 10 -~ 

1 M@/yr = 6.303 1025 g/s,  # = 0.60 

4 I s o t h e r m a l  W i n d s  w i t h  a n  O u t w a r d  F o r c e  

The m o m e n t u m  equation of an isothermal wind with an extra  outward force 
f per unit mass can easily be derived from (4), (12) and (2) 

1 d y  2a 2 GM,,  r' -g- f(r) 
' (33) 

= v 2  _ a 2  

We can immediate ly  see from this equation that  the effect of a force is 
very different for the subsonic and the supersonic regions. 

(1). Supersonic: The denominator  is positive so an extra  force f results 
in an increase of the velocity gradient. The wind will reach a higher velocity. 

(2). Subsonic: The denominator  is negative so an extra  force f results in 
a decrease of dr~dr. This may  seem surprising, because it implies that  if the 
wind is pushed outwards in the subsonic region it will accelerate slower, in- 
stead of faster. One can understand this by remembering the conclusion of the 
previous section, that  the density structure of the subsonic region is mainly  
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determined by the hydrostatic equilibrium. So applying an outward force in 
the subsonic region has the same effect as reducing the gravity, which results 
in an increase in the pressure scaleheight. An increase in the pressure scale- 
height gives a slower outward decrease of the density and, since the velocity 
has to follow the density structure (because of the mass continuity equation), 
a slower outward decrease in density means a slower outward increase of the 
velocity! (Note: this does not mean that  the subsonic velocity is smaller if 
there is an outward force, but that  the subsonic velocity gradient is smaller. 
We will argue below that the subsonic velocity is in fact larger). 

What  will be the result of the force on the mass loss rate? We have shown 
above that  the mass loss rate is set by the condition that the solution of the 
momentum equation has to pass through the critical point. The conditions 
for the critical point are 

G M .  f( c)r  and vc = a .  (34) 
rc "-- 2a 2 2a 2 

We see that  the critical velocity is again the isothermal sound speed, but 
the critical point is now closer to the star than for f = 0. Since the velocity 
at rc is the same as for f = 0, but the velocity gradient in the subsonic 
region is smaller due to the force, the velocity below the critical point must 
be higher than without a force! This is also true at the lower boundary r0 of 
the isothermal region. This means that the mass loss rate M = 4~rr~vopo is 
higher! 

This can also be understood in terms of the change in the density struc- 
ture. Applying a force in the subsonic region results in a slower outward 
density decrease. Moreover, the critical point is closer to the star. Both ef- 
fects imply that the density at the critical point, where v -- a, will be higher 
than for f = 0. If the density at the critical point is higher and the velocity at 
the critical point is the same, the mass loss rate will be higher. We conclude 
that  applying a force in the subsonic region results in a higher mass loss rate. 

5 T h e  E f f e c t  o f  E n e r g y  I n p u t  o n  a S t e l l a r  W i n d  

In Sect. 2.3 we have derived the energy equation (8) of a stellar wind with 
momentum and energy input. In this section we study the effect of energy 
input on the velocity law and the mass loss rate. The wind is no longer 
assumed to be isothermal. 

The momentum equation (4) in a wind with energy and momentum de- 
position does not contain the thermal energy deposition q(r). This does not 
mean, however, that  the velocity in the wind is unaffected by heat deposition. 
Heat input changes the temperature structure of the wind and hence also the 
gas pressure. Since the momentum equation contains the force due to the 
gas pressure gradient, heat input affects the velocity law, density structure 
and the mass loss rate of a stellar wind. The effect of energy input on the 
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velocity can be derived from the momentum equation by taking into account 
its effects on the pressure gradient. This will be studied here. 

The pressure term p-1 dp/dr in the momentum equation can be expressed 
in terms of p/p 

1 dp d(p/p) dp -1 d(p/p) p d lnp 
_ - -  + - - -  ( 3 5 )  

p d r -  dr P dr dr p dr 

The density gradient can be eliminated by means of the mass continuity 
equation d inp = - d  lnv - 2d lnr. Substitution of the isothermal sound speed 
a(r) 2 : p/p : TIT/# for a perfect gas yields 

1 dp _ da 2 2a 2 a2 d inv (36) 
p dr dr r dr 

This results in the momentum equation in a general form that involves both 
the effects of a change in temperature and the external force 

dv a 2 dv da 2 232 GM,  
- -  - -  + r 2  = f ( 3 7 )  v dr v dr + dr r 

o r  

- d r  r 2  - " 

This equation contains the term da2/dr = (T~/p)dT/dr. The energy equation 
(8) shows that  in a wind with momentum and energy deposition 

da 2 Tt dT _ 7___~1 f + q r 2 V~r (39) 
dr # dr 7 

With 7 = 5/3 for an ideal gas. Substituting this expression for da2/dr in the 
momentum equation one finds after multiplication of the result by 7 

l d v  {2c~ GM. } 2 
; ~ -  7 r - - r -  + f - ( 7 - 1 ) q  /{v 2 - c , }  . (40) 

In this expression cs = x/Ta 2 is the adiabatic speed of sound. 
This is the most general form of the momentum equation of a spherically 

symmetric stellar wind with energy input and momentum input. Notice that  
the energy input, q > O, produces an inward directed force (7 - 1)q which 
counteracts the outward force f .  This is because the energy input heats the 
gas which reduces the negative temperature gradient and thus the outward 
force of the pressure gradient. 

The two forms of the momentum equation (38) and (40) show a curious 
difference. The first one suggests that the critical point occurs where v = a 
whereas the second one suggests that  the critical point occurs where v = cs. 
The difference is due to the fact that (38) still contains the temperature gra- 
dient in the numerator  through the term da2/dr. This temperature gradient 
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depends on the velocity gradient as can easily be seen from (39). This extra 
v d v / d r  term means that  the critical point is not at v -- a but at v = cs. 

Equation (40) seems to suggest that  in the most general case of a wind 
with energy and momen tum deposition the critical point is always the sonic 
point.  This, however, is only true if both  f and q do not depend on the 
velocity gradient dr~dr. If  the momen tum or energy deposition depends on 
dr~dr,  it will produce additional terms of type dr~dr in the right hand side 
of (40) and move the critical point to another location. This is the case for 
line driven winds (see second contribution Lamers, this Volume). 

For a wind with a given force f ( r )  and given m o m e n t u m  input q(r), 
the m o m e n t u m  equation (40) and the energy equation (8) can be solved 
simultaneously by standard numerical methods.  This gives the velocity law 
and the temperature  structure. The mass loss rate is set by the condition 
tha t  the velocity law has to pass smoothly through the critical point. 

6 A W i n d  w i t h  a n  f ~ r - 2  F o r c e  

Let us now consider the effect of an extra  force on the mass loss rate and 
the velocity law. We take a simple f ,-~ r -2 force that  starts at different 
distances from the star. Such a force can be produced by radiation pressure 
due to optically thin lines or due to dust. This is because the radiative flux 
F varies as r -2 and thus the radiative acceleration is 9tad = ~ F F ( r ) / c  = 
x F F ( R . ) ( r / R , ) - 2 / c  ~ r -2 where gF is the flux-mean opacity. The last 
equality is only valid if t~F is independent of distance. 

The wind is again assumed to be isothermal. This simplifies the problems 
because the energy equation is reduced to T(r )  = T and it allows the isolation 
of the effects of the forces on the winds. The presence of a positive r -2 force 
which is smaller than the acceleration of gravity and which acts throughout 
the whole wind will obviously have the same effect as a reduction of the 
gravity or the mass of the star by a constant factor. In that  case the mass 
loss rate and the velocity can simply be solutions of (24) and (32). However, 
if the force operates only in the lower part  of the wind or only in the upper 
part ,  the solutions will be different. 

The momen tum equation of an isothermal wind with an additional posi- 
tive force f = Ar  -2 is 

with 

dv 1 dp G M .  A(r) 
- -  + -  ( 4 1 )  

V'~r -- p dr r 2 r 2 

A(r )  -: 0 for r < ra 

A(r) = A for r > ra • (42) 
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In this equation A is a positive constant in the region r :> rd where the 
force operates. The boundary is called rd because of the similarity of this 
model to the dust driven wind, where the radiation pressure is switched on 
at the dust-formation radius. Expressing the pressure gradient in terms of 
the velocity gradient by means of the mass continuity equation (1), with (12) 
and (2) results in the momentum equation 

r 2 dv 2a2r - G M ,  + A(r )  2a2r - GM,(1  - F( r ) )  (43) 
v dr v 2 - a 2 v 2 - a 2 

with F( r )  = 0 if r < rd and F( r )  = A / G M ,  if r > rd. The critical point 
occurs where 

rc G M ,  
= (44) 

1 -- F(rc) 2a ~ 

The models for different values of rd are shown in Fig. 3 for F ( r )  = 0.5 
at r > rd. The temperature of the wind model is chosen such that  T4T/]~ = 

a 2 = ( G M , / r o ) / 2 v ~ O .  As the location of the critical point depends on F,  we 
will indicate it as re(F) .  The dependence of M in the five cases can be judged 
from the velocity laws by realizing that  2~/is proportional to v(r0) because 
p(ro) is a fixed boundary condition. The top figure shows the location of re(O) 

in case of F = 0. The bot tom figure shows the location of re(F) in case of 
F - 0.5 throughout the wind. These are the two extreme cases. 

If rd > re(0) the structure of the subsonic region nor the location of the 
critical point is affected by F. So the mass loss rate will be the same as in the 
case of F = 0. This shows a very important  characteristic of stellar winds: an 
outward force applied to the wind above the critical point  does not affect the 

mass loss rate. The velocity in the supersonic regions at r > rd will be larger 
however than in the case of F = 0, because the numerator  of (43) is larger 
when F > 0 and the denominator of (43) is positive. So increasing F above 
the critical point will result in a steeper velocity law and larger velocities at 
r > rd. In the supersonic region the value of _r' may exceed 1. 

If rd < rc (F) the critical point occurs at rc (F). This is due to the fact that  
the location of r¢ is given by the local condition that the numerator of (43) is 
zero. The mass loss depends on the value of F through the whole subcritical 
region r0 < r < rc(F)  because the velocity law in this region is affected by 
F(r )  according to (43). A positive value of F > 0 implies a smaller velocity 
gradient and a smaller density gradient at rd < r < rc (0) than in the case of 
/" -- 0. This smaller density gradient results in a higher value of p at re( / ' )  
and thus a higher mass loss rate. 

If the value of F becomes positive somewhere between re(F) and re(0) 
then the location of the critical point depends sensitively on the shape of the 
F(r )  function. If Y jumps from 0 to a value larger than 1 at ra, the critical 
point will occur at rd. This resembles models with radiation pressure due to 
dust. 



1.0l 

0,,01 

O.sl 

0.4i 

a . i  

A FO~'~ ST~HC~ AT Ol~"f~q1" O I S T ~  

r .~  1.0 

r . = O . W  

o.D 0.2 0.4 O.S 0 4  
• / r .  ~.9 r / , .  

Stellar Wind Theories 

.q.C 

- I  

~ - o J  . . . ' " " "  

- I . a  

-'~ . . . .  '3.,, 

83 

Fig. 3. The effect of an outward force f(r) = F ( r ) G M , / r  2 on the velocity 
structure of an isothermal stellar wind. The left hand side shows the various 
distributions of/~(r) and the right hand side shows the resulting wind veloc- 
ity. The wind velocity for F(r) = 0 is shown by a dotted line. The location 
of the critical point is indicated by a dot in the right hand figure and by a 
tickmark in the left figure. Notice the changes in the location of the critical 
point and in the mass loss rate ~/, , ,  v(r0) if F(r) > 0 in the subsonic region 

The mass loss rate can easily be predicted in the following way. Below the 
critical point, the density structure will be approximately as in hydrostatic 
equilibrium. This means that the density at ra can simply be derived from the 
density at the lower boundary and the outward decrease with the pressure 
scale height. Since the sonic point is at rd, the mass loss rate follows from 
the mass continuity equation. 

7" T h e  F i v e  L a w s  o f  S t e l l a r  W i n d  T h e o r y  

Based on the arguments and the simple models described above, we can 
formulate five important laws for stellar winds. 

1. The first law of stellar winds: 
The mass loss rate is set by the condition that the velocity law should 
pass smoothly through the critical point. 
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2. The second law of stellar winds: 
The mass loss rate is determined by the forces and the energy in the 
subcritical region of the wind. 

3. The third law of stellar winds: 
The input of energy (heat) or momentum (by an outward directed force) 
in the subcritical region results in a smaller velocity gradient but a higher 
velocity and a higher mass loss rate. 

4. The fourth law of stellar winds: 
The input of energy (heat) or momentum (by an outward directed force) 
in the supercritical region results in an increase in the terminal velocity 
of the wind, but does not affect the mass loss rate. 

5. The fifth law of stellar winds: 
In the subsonic part of the wind the density structure is very similar 
to that of a hydrostatic wind. The velocity law then follows from the 
mass continuity equation. In the supersonic part of the wind the forces 
determine the velocity structure. The density law then follows from the 
mass continuity equation. 

8 M a s s  L o s s  M e c h a n i s m s  

Several mechanisms have been suggested to explain the mass loss and stellar 
winds of different types of stars. We briefly summarize these, together with 
some references to the basic theory. 

8.1 C o r o n a l  W i n d s  

Coronal winds are driven by gas pressure due to the high temperature  of 
stellar coronae. Stars with a sub-photospheric convection zone can be sur- 
rounded by a hot corona of a few 106 K. The theory of coronal winds is very 
similar to the basic theory of hot isothermal winds that  was discussed in 
Sect. 3, apart from the fact that  coronal winds are not really isothermal but  
have a slowly outward decreasing temperature.  The temperature gradient is 
small and the wind remains hot up to a large distance because of thermal  
conduction. The mass loss rates of coronal winds is rather small (see Table 1) 
except for very low gravity stars. However, for these stars other mechanisms 
are more important .  

References: Parker (1958), Brandt (1970) 

8.2 D u s t  D r i v e n  W i n d s  

The driving force of dust driven winds is the radiation pressure on dust. Dust 
can form in the envelopes of cool stars when the temperature has dropped 
to below ,,- 103 K and the density is still sufficiently large. Since dust is a 
very good continuum absorber, the dust grains will be radiatively accelerated 
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outwards. Interactions with atoms provide the momentum-sharing needed to 
drag the gas component along. The wind theory is basically similar to that 
discussed in Sect. 5 for a wind with an f ,-~ r -2 force from a certain distance 
onwards. The mass loss of the dust driven winds depends crucially on the 
location of the dust formation. 

Reference: Sedlmayr (this Volume) 

8.3 L i n e  D r i v e n  W i n d s  

The winds of hot stars are driven by radiation pressure on spectral lines due 
to ions of abundant elements that have very large numbers of absorption lines 
in the UV and the far-UV (below 912 A). The radiation pressure depends 
strongly on the Doppler effect, because it allows the ions to intercept stellar 
radiation that was not absorbed in the lower layers of the wind. In this respect 
the line driven wind theory is very different from the dust driven wind theory 
and the basic theory described for gas-pressure driven winds because the force 
depends on the velocity gradient. The line driven wind theory is discussed in 
my other paper in this Volume. 

References: Castor et al. (1975), Lamers (second contribution to this Vol- 
ume). 

8.4 P u l s a t i o n  D r i v e n  W i n d  T h e o r y  

Cool supergiants such as the Mira stars and the AGB stars pulsate. During 
each expansion phase the atmosphere is tossed upward and it falls back dur- 
ing the contraction of the star. However, due to the low gravity, the layers in 
the outer atmosphere fall back so slowly that  they are hit by the next expan- 
sion wave before they have reached their initial position. So the outer layers 
get a kick during every pulsation cycle. This results in a slow acceleration of 
outer layers of the atmosphere. This mass loss mechanism can be much more 
efficient if dust formation is taken into account because of the resulting radi- 
ation pressure on dust. The combination of pulsation and radiation pressure 
on dust provides a very efficient mass loss mechanism for luminous cool stars. 
Figure 4 shows the basic mechanism. 

References: Bowen (1988). 

8.5 S o u n d  W a v e  D r i v e n  W i n d s  

The convection zone below the photospheres of cool stars generates sound 
waves in the atmospheres. Sound waves generate a pressure very similar to 
the gas pressure by thermal motions. Outward travelling soundwaves produce 
a pressure gradient that  results in an outward directed force. This force could 
in principle drive a stellar wind. The problem with the sound wave driven 
wind models is the same as for wind models driven by gas pressure (coronal 
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Fig.  4. The mass loss mechanism of pulsation. Left: pulsation only; right: 
pulsation and radiation pressure due to dust. The dust is formed at a distance 
of 4 1013 cm. The figure shows the motions of the different layers during a 
pulsation cycle (from Bowen 1988) 

winds): the mechanism produces only small mass loss rates. This is because 
the amplitude of the waves has to be small, otherwise dissipation would 
quickly decrease the wave pressure. 

References: Pijpers and Hearn (1989), Pijpers and Habing (1989) 

8.6 Alfv6n W a v e  D r i v e n  W i n d  M o d e l s  

Stars with magnetic fields can have a mass loss due to the wave pressure by 
Alfv~n waves. This requires open magnetic field lines with their footpoints 
in the photosphere. When these footpoints are oscillating, a magnetic wave 
travels outwards with the Alfv@n speed, vA = B / 4 . v / ~ .  This mechanism is 
quite similar to that of the sound wave driven winds but it is more efficient 
because the Alfv~n speed of magnetic waves is much larger than the sound 
speed. It can result in high mass loss rates and high wind speeds of several 
times the Alfv~n speed. This mechanism is important for stars that  are not 
luminous enough to have a strong radiation pressure , i . e .L .  < 103Le. It is 
the dominant mechanism for the fast wind from the coronal holes of the sun. 

References: Hartmann and MacGregor (1980, 1982). 
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8.7 Magnetic Rotating Winds 

In these models the wind is basically driven by the rotation. Since the plasma 
can only move along the magnetic field lines, material in the equatorial plane 
of the star will be "flung out" by the magnetic field lines that corotate with 
the star. (This is similar to the motion of a marble in a hollow flexible plastic- 
tube. When the tube is swayed around, the marble will be flung out of the 
tube). This process converts rotational energy into expansion from the outer 
atmosphere. The mass loss rate is mainly determined by the rotation, and the 
terminal velocity of the wind is determined by the strength of the magnetic 
field. This mechanism explains the fast deceleration of rapidly rotating pre- 
main sequence stars. 

References: Weber and Davis (1967), Brandt (1970) 

8.8 Summary of Wind Theories 

Table 2 gives a summary of the characteristics of the mechanisms for mass 
loss not due to rotation. 

Table 2. Mass loss mechanisms 

Mechanism and Stars Types Characteristics 
CORONAL WINDS 

Solar type 
Giants ? 

LINE DRIVEN WINDS 
Hot stars 

DUST DRIVEN WINDS 
Cool supergiants 

PULSATION DRIVEN WINDS 
Cool pulsating stars 

ALFVEN WAVE DRIVEN WINDS 
Cool stars with magnetic fields 

MAGNETIC ROTATING WINDS 
Magnetic fast rotators 

SOUND WAVE DRIVEN WINDS 
Stars with convective envelopes 

G,K 

O,B,A 
CPN, WD 
WR? 

M, AGB 

Mira's, AGB? 

F,G,K,M, 

WR? 

?? 

low/~/, high voo 

high M, high v~ 

high ~r, low v~ 

high M, low voo 

low M?, high voo 

high/~/, high voo 

low A:/, low v~ 
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Abs t rac t .  We describe the ingredients necessary for the consistent theoretical de- 
scription of dust forming circumstellar shells around Red Giants on the asymptotic 
giant branch. The complete set of equations required for the reliable modeling of 
stationary and pulsating situations is discussed and applied to a dust driven wind 
and to a typical carbon rich Mira atmosphere. Special emphasis is put on the the- 
oretical description of the dust formation process and on the complex interaction 
among dust formation, chemistry, hydrodynamics, thermodynamics and radiative 
transfer. We present some fundamental implications of a consistent description of 
the dust forming system on its observable appearance. 

1 G e n e r a l  Ove r v i ew  

All stars, except perhaps the most compact objects like White Dwarfs or 
neutron stars, exhibit a more or less pronounced mass loss proved by clear 
observed signatures like circumstellar reddening, extended shells, P-Cygni  
line profiles, radial velocity fields, etc. The mass loss rates M are strong 
functions of the. object's position in the HR diagram and range from insignif- 
icant values (M < 10-12Moyr -1) characterizing objects at the lower main 
sequence up to huge values (M = 10 -6 - 10-4Moyr  -1) for objects in the 
upper region of the HR diagram, i.e. those objects having extremely high 
luminosities (see Fig. 1). 

A detailed inspection of the stellar mass loss phenomenon reveals different 
modes of mass loss being connected with the various types of objects in the 
HR diagram (see Fig. 2): 

i) quasi stationary winds: These are observed in hot O and B stars, in 
solar type objects and in K giants, where the mass loss phenomenon seems 
to be a long lasting process with typical t ime scales larger than 105yr. 

ii) periodic and semi regular mass loss: In these cases, which are observed 
in the outflows of Miras and long-period variable stars (LPVs), the mass loss 
shows a distinct periodic variation which is believed to be connected with the 
intrinsic stellar pulsations and seems to be triggered by outwards traveling 
shock waves generated at the bot tom of the stellar atmosphere. 

iii) episodic mass loss: This mode is observed in RCrB-type stars, Wolf- 
Rayet stars and of course in explosive events like novae and supernovae. 

Despite this rather complex observational situation there seems to be a 
rather systematic distinction between the various driving mechanisms for the 
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Fig.  1. Lines of constant mass loss rate in the HR diagram (after de Jager 
et al. 1988). Labels are - l og l0 (~  r) 

quasi-stationary hot stars, K giants ~ Pup, ~ Aur 
(quasi)periodic Miras, semi-regular Variables o Cet, RScl 
episodic RCrB, Wolf-Rayet stars, RCrB, WR 140, 

SN, Novae SN1987a, V846Cen 

Fig.  2. The different modes of mass loss, respective class of objects, and 
representative objects 

mass loss as depicted in Fig. 3. There are only two basically different mech- 
anisms: radiation induced (applicable to high luminosity objects) and wave 
induced winds (applicable to objects generating considerable wave energy 
near the surface of the star), respectively. As most giants and supergiants 
show a more or less pronounced variability, radiative acceleration of the wind 
might not be the only driving mechanism, but also momentum and energy 
input by waves should contribute to or even dominate the generation of the 
wind and consequently the radial structure of the velocity field. Therefore, a 
simultaneous treatment of radiative momentum transfer to the matter  and 
momentum and energy dissipation in the wave field is required to model the 
mass loss phenomenon in these cases. 
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Since the lecture of H. Lamers (first contribution to this Volume) re- 
views the general aspects and the basic theoretical concepts of stellar winds 
throughout the HR diagram, in this lecture we will focus on the mass loss of 
late-type stars, in particular of AGB objects, where mass loss plays a central 
role not only for the understanding of their shell structure but also for the 
evolution of the object itself. 

2 B a s i c  C h a r a c t e r i s t i c s  o f  L a t e - T y p e  S t a r s  

2.1 H R  Diagram Character i s t ics  

Red giants and supergiants are evolved objects occupying the upper right 
part of the HR diagram. These objects are characterized by rather cool (red!), 
extended (giant!) shells having low expansion velocities but rather large mass 
loss rates. A compilation of some important characteristic properties of these 
AGB objects is given in Table 1. 

An important signature is the observation of significant dust formation 
causing pronounced reddening and, in extreme cases, complete obscuration 
of the central stars. Though most objects in this region of the HI~ diagram 
are due to their evolutionary state intrinsic variables like Miras and LPVs - 
which clearly can be found in the detailed temporal and spatial signatures of 
the wind - the stellar mass loss phenomenon itself in most cases seems to be 
a long-lasting process whose secular variations are finally controlled by the 
intrinsic evolutionary time scale of the star. 

In all objects the occurrence of dust seems to have a decisive impact upon 
the detailed shell structure, the local dynamics, and finally upon the overall 
appearance of the object as manifested e.g. by a clear correlation between 
the observed stellar mass loss rate and the circumstellar dust abundance 
measured by the IRAS colors which is found for many late-type stars (cf. 
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Table 1. Characteristic quantities of dust forming late-type stars 

stellar mass M, 
stellar luminosity L, 
stellar temperature 7", 
mass loss rate M 
wind velocity v~ 
mass of the shells Mcs 
pulsation period P 

~ 0 . 7 . . . 2 . 0 M Q  
,-~ 103... 105 L• 

"-, 2000... 3000 K 
10 -7 . . .  10 -4 Moyr -1 

,-, 10.. .30 kms -I  
,,, 0 .1 . . .0 .6M 0 
,-~ 100... 1000 d 

Fig. 4). A second important fact is that the observed high mass loss rates 
are carried by rather low expansion velocities drawing a clear distinction to 
hot star winds where similar high mass loss rates always are connected with 
expansion velocities being at least a factor of 100 larger. The low expansion 
velocity and high mass loss rate, together with the fact, that the objects under 
consideration only have low surface gravity, places important constraints on 
the mass loss mechanism: Most of the energy transfered to the wind must 
be deposited in the sub-sonic (inner) region to account for the observed high 
mass loss rate. Only a small fraction of the driving energy can be supplied in 
the supersonic (outer) wind regime in order to accelerate the wind to its low 
terminal velocity. For a detailed discussion of the basic physical constraints 
imposed on the driving mechanism of the wind, we refer to the excellent 
review of Holzer and MacGregor (1985). 

2.2 Shell Charac te r i s t i cs  

For a typical Red Giant, Fig. 5 depicts both the observational side and the 
theoretical side of the problem by focusing various distinct features of the 
observational appearance as well as important processes constituting neces- 
sary ingredients of the theoretical description which are required for a reliable 
physical understanding of such objects. 

Observat ional  facts.  The spectra of the objects show P Cygni line pro- 
files, being a clear signature of the shell expansion caused by a stellar wind. 
Typical expansion velocities range from 10. . .  30 kms -1 thus being extremely 
supersonic. The P Cyg profiles are found in a variety of molecular lines (e.g. 
Keady and R, idgway 1993) demonstrating the radial evolution of both the 
complex chemistry and the increasing velocity. From a detailed modeling of 
these infrared molecular lines the radial density distribution and the mass 
loss rate can be inferred. In almost all AGB objects, also rotational emission 
lines of various molecules originating in the outer region of the shells are ob- 
served at radio wavelengths, from which usually the terminal wind velocity 
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Fig. 4. Correlation between mass loss rate and IRAS colors (from Loup 
et al. 1993) 

and the mass loss rates in the outer shell regions are derived (e.g. Knapp and 
Morris 1985). 

A noticeable feature observed in nearly all objects in this region of the 
HR diagram is effective dust formation in the cooling outflow which manifests 
itself by a significant reddening of the continuum radiation field, large infra- 
red (IR) excesses and specifically by pronounced dust absorption or emission 
bands. In some objects, in particular early M giants, also emission lines are 
observed in the UV and visual spectral region, indicating a non-monotonic 
temperature structure which usually is attributed to the existence of a chro- 
mosphere well inside the dust forming region. 

High spatial resolution observations in different wavelength bands reveal 
a rather complex radial structure of the circumstellar dust shell (e.g. Ridgway 
and Keady 1988, Danchi et al. 1994). From such observations, the approxi- 
mate location of the dust formation region can be inferred. 

Phys ica l  processes. The basic feature of a red giant shell is the presence 
of a velocity field starting in the photosphere and showing a distinct sub- 
sonic-supersonic transition. This velocity field causes a cooling flow along 
which a more and more complex chemistry evolves providing beyond some 
radius (below 1300K) favorable conditions for cluster nucleation and grain 
growth. Due to its huge extinction coefficient, the dust grains very efficiently 
absorb radiation momentum and energy, which leads to an effective acceler- 
ation of the circumstellar material and to a pronounced infrared excess (see 
next section). Additional energy and momentum input to the material by 
wave dissipation causes a levitation of the atmosphere in the inner region 
and, in connection with the effects introduced by the dust, might lead to 
severe influences on the radial structure of the dust shell (see Sect. 4.4). 
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Fig. 5. Observed appearance and physical mechanisms in a typical circum- 
stellar dust shell 

3 Self-consistent Description of Dust Forming 
Circumstellar Shells 

The presence of dust in general has three severe impacts upon the thermo- 
dynamic, hydrodynamic, and chemical structure of the dust forming system: 

i) Due to its specific absorption properties, dust grains - being macro- 
scopic particles - dominantly absorb high energy photons and re-emit in the 
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infrared regime, thus transforming the trapped short wavelength photons 
into long wavelength photons, for which the systems usually are transparent. 
Therefore the dust grains act as an energy sink in the equation of energy by 
channeling the energy out of the system. 

ii) Due to its large absorption and scattering cross sections, the momen- 
tum of the radiation field is very effectively taken up by the dust grains and 
subsequently is transfered to the ambient gas by frictional coupling, thus 
causing an efficient radiative acceleration of the matter. 

iii) By formation of macroscopic dust particles the chemistry is affected 
with regard to two aspects: 

- By the dust formation process itself, causing a significant depletion of 
the chemical species involved in the formation of grains. 

- By the formation of grains, surfaces are introduced into the system, 
which now are available for a variety of chemical reactions (like H2 formation 
from atomic hydrogen) to take place which usually would not occur in the 
gas phase. 

Due to these significant impacts of the grains on any dust forming sys- 
tem, also for the consistent description of a dust forming AGB star shell 
these aspects are of particular importance providing a close coupling among 
the chemical, thermodynamic, and hydrodynamic structure of the dust form- 
ing circumstellar shell (see Fig. 6). In the numerical modeling, these different 
processes, which are described in the following, have to be treated simulta- 
neously, taking into account their mutual interactions. 

3.1 C h e m i s t r y  of  the  Ci rcumste l la r  Shell 

Figure 7 shows that chemistry plays a central role with regard to three im- 
portant aspects for the physical behavior of circumstellar shells which have 
to be considered in the quantitative modeling: 

a) The chemical structure of the atmosphere and the shell i.e. the knowl- 
edge of the local concentrations of the various ionic, atomic and molecular 
species, determines the transport coefficients of the gas, which are most im- 
portant ingredients for the quantitative thermodynamic and hydrodynamic 
modeling. This concerns in particular the molecular opacity coefficients which 
in two ways influence the model structure: i) atomic and molecular absorption 
and emission determine the radiative transfer and hence determine via the 
energy equation the local temperature of the system, and ii) the extinction 
coefficient determines the absorption of radiative momentum in particular in 
the molecular lines which in the equation of motion might contribute sig- 
nificantly to the outward directed acceleration causing possibly a levitation 
of the atmosphere (e.g. Jcrgensen et al. 1992). As this effect introduces a 
pronounced increase of the scale height of the system, this is of particular 
importance for hydrostatic models, which might become sufficiently extended 
for further effective molecule formation and even dust formation to take place. 
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Fig .  6. Coupling among the different physical processes. The large box com- 
prises the classical problem of a stellar a tmosphere (after Sedlmayr and Win- 
ters 1991) 

To get reliable molecular extinction, absorption and emission coefficients 
is by no means a simple problem since it requires both  realistic local molecular 
concentrations (see Sect. 3.1.1) and reliable monochromat ic  molecular trans- 
port  coefficients per particle where a huge number  of transitions usually has 
to be taken into account. For this purpose, either direct methods are applied 
by taking into account millions of individual lines in the transfer calculations 
or statistical approaches like the use of opacity distribution functions (ODF) 
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F i g .  7. General role of chemistry for a dust forming circumstellar shell 

or opacity sampling methods (OS), where for each frequency interval suit- 
able average values accounting for the total contribution of the corresponding 
transitions are constructed. For further reading see the excellent reviews of 
Tsuji (1986) and Gustafsson (1989) and the recent conference proceedings on 
molecules in the stellar environment (Jcrgensen 1994). 

b) A second important aspect of the chemistry is that it provides the 
concentrations of the species being able to condense and thus provides the 
prerequisites for primary dust nucleation and growth. As the species relevant 
for dust formation usually are different from those molecules determining 
the basic atmospheric structure (see a)) their determination requires partic- 
ular arguments being provided by both the special nature of the observed 
circumstellar dust components and the individual chemical behavior of the 
molecules under consideration. This complex is discussed in Sect. 3.2. 

c) Finally, chemistry plays a central role with regard to a reliable interpre- 
tation of actual observations of circumstellar shells aiming at a quantitative 
diagnostics for real objects. Any detailed quantitative analysis has to be based 
on the knowledge of the local concentrations of the various species and there- 
fore involves the detailed investigation and modeling of the chemical shell 
structure. From Fig. 7 one infers that this structure is strongly coupled with 
the various other boxes, thus clearly demonstrating that any reliable quan- 
titative diagnostics of circumstellar shells has to be based on self-consistent 
theoretical descriptions. 

3.1.1 Level of  A p p r o a c h  

In all model calculations the chemistry turns out to be a most time consum- 
ing part of the necessary numerics. For this reason, any qualified judgement 
which allows to reduce the complexity of the problem to a still realistic min- 
imum level is very useful. The necessary level of approach can be inferred 
from comparing the different time scales describing the various processes in 
a chemical network. This network consists of a set of continuity equations 

N N 
an~ 

+ div(v, ni) = ~(qi¢,] g - oc'll _,,j, +  (q ,jg (1) 
as 

j----1 j = l  
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where c denotes kinetic reactions, p denotes photo reactions, g and 1 are the 
gain and loss terms, respectively, ni is the number density of species i, and N 
is the number of species considered in the network. For spherical symmetry, 
the divergence term is given by 

1 0 0ni 2 v 0v 
div(v,  hi) - r2 Or (r2 v hi) = v--~-- r + m r  ni + --0r n~. , 

and the time evolution of ni in co-moving coordinates is 

dni toni ani 
h i -  dt - 0---~ + v Or 

Inserting these expressions into (1) and dividing by the density ni provides the 
respective time scales defined in Table 2 where the different states of equilib- 
rium - which in principle may be encountered in a circumstellar environment 
- are depicted. 

l o g ( r / R , )  [ I I I I , 

0 1 2 3 4 
Fig.  8. Chemical processes in different regions of the circumstellar shells 
around red giants (adopted from Patzer et al. t996a) 

In a real circumstellar shell various chemical processes take place, which 
in their full complexity are depicted in Fig. 8. Though being impressively 
complicated, in many situations the description of the chemistry may be con- 
siderably simplified. Figure 9 shows various situations of circumstellar shells 
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Table  2. Definition of the different time scales and different states of equi- 
librium. Definition: a b . . .  = rain{a,  b . . . .  } >> [a + b + . . .  [. Terms marked 

by ,,<<,, can be neglected against the terms inside the braces. CE: chemical 
equilibrium, KE kinetic equilibrium (adopted from Goeres et al. 1988) 

hydrodynamics 

r l i  

source terms 

Y 
CE (-+ LTE) 

CE ( 4  LTE) 

KE 

(--+ non LTE) 

KE 

(--+ non LTE) 

<< << 
Y 

< << n o n  CE  

non KE 

f r o z e n  << << 
chemistry 

rd'~ race 1 rch 1 r ~  1 time scales 

- 1  
Tsource 

and the corresponding required approximations for the applied chemical net- 
work. As a general finding it may be stated that  in the region beyond the sonic 
point, where the wind expands at a supersonic velocity, in any case a non-KE 
approach should be applied whereas for the inner region depending whether 
ionizing or dissociating photons are present or not, a CE or KE descrip- 
tion might be appropriate. In situations, where shock waves are propagating 
through the system, always a non-KE approach has to be applied, even near 
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Fig. 9. Expected equilibrium situations with respect to the chemistry for 
different types of late-type stars 

the stellar surface. The chemical network equations basically have the form 
of an equation of continuity i.e. the 1.h.s. consists of a partial time derivative 
of the concentration of the considered species and a divergence term applied 
to the corresponding flux density. This system of rate equations usually is 
applied to a co-moving mass element where the rate equations simply reduce 
to a system of first order nonlinearly coupled ordinary differential equations. 
Due to the huge range in magnitude of the different time scales governing the 
various reactions contributing to the network, in most applications the rate 
network turns out to be a stiff system requiring especially designed codes for 
a stable and sufficiently accurate solution. Being of first order in time, any 
solution of the chemical network requires the prescription of a suitable initial 
condition for the species under consideration. For a stellar wind which due to 
its expansion can be considered as a basically monotonic situation usually an 
initial condition is chosen provided by the chemical composition at the base 
of the photosphere where the temperature is large enough for all molecules to 
be completely dissociated. In many cases it is also appropriate to start with 
the calculations at a layer being sufficiently dense for chemical equilibrium 
to hold. 

In order to demonstrate the effects of a non-KE situation compared to 
a chemical equilibrium calculation, in Fig. 10 the radial course of important 
molecules is shown for the inner and outer region of a shell model for the 
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prominent carbon-rich infrared object IRC +10216. One clearly sees that 
the non-LTE effect generally does not influence the key molecules (H2, CO, 
N2) but obviously has a significant influence upon the reactive molecules (H, 
C2H2, HCN, C2H, C, CN). Thus, even in the inner region of this C-rich wind 
CE does not hold but, due to the rapid expansion in the acceleration region 
a frozen chemistry develops. The external regions of a shell are always af- 
fected by two important processes, both increasing a departure from CE: i) 
Because of the rapid dilution in the supersonic wind, most reactions freeze 
out at some non equilibrium value (i.e. the corresponding reaction rate be- 
comes negligible) and ii) due to the strong, high energetic interstellar UV field 
dissociating and ionizing photo reactions begin to influence the circumstellar 
wind from outside causing a rapid drop of the molecule abundances and the 
corresponding atoms and ions to show up. 

3.1.2 The  Key Role  of  the CO Molecule  

Due to its extremely high bond energy (11.09 eV), the CO molecule plays a 
most important role for the kind of chemistry to be expected in a circumstel- 
lar shell. Considering a mass element moving outwards along the expansion 
trajectory of the stellar wind, CO is the first molecule to be formed. As it can 
be dissociated only be very energetic photons, in the absence of dissociating 
UV fields, CO formation acts like an "absorber" removing C and O atoms 
from the surroundings until either all C atoms (for oxygen-rich situations) 
or all 0 atoms (for carbon-rich situations) are consumed (cf. Fig. 11). As 
the CO molecule is practically chemically inert, the chemistry of the system 
then is determined by the residual reactive specimens which in the case of 
oxygen-rich systems basically yields oxides whereas in the case of carbon- 
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Fig. 11. Blockage by the CO molecule 

rich systems predominantly carbon-hydrogen compounds, carbides and, if 
hydrogen is absent, other carbonaceous compounds are formed (cf. Table 3). 

Detailed network calculations show that this key role of the CO molecule 
which is obvious for situations not too far from CE, generally also holds for 
most KE situations (Beck et al. 1992) yielding also for these systems a clear 
distinction of the character of the chemistry. Only for very pronounced UV 
fields e.g. in the late stages of a nova shell, also the CO molecule is ionized or 
dissociated by photo reactions, leading to a mixed oxygen-carbon chemistry 
in this case. 

3.2 Dus t  N u c l e a t i o n  a n d  G r o w t h  

3.2 .1  C o n d e n s i n g  S p e c i e s  

Astrophysical dust formation is a widespread phenomenon in particular ob- 
served in cool stellar outflows which are characteristic for red giants and su- 
pergiants. The detailed findings of corresponding observations demonstrate 
that circumstellar dust is a rather massive phenomenon being connected with 
substantial reddening of the stellar radiation field and hence indicating large 
optical depth produced by dust absorption and dust extinction. This clearly 
shows that the dust component is a major constituent of the circumstellar 
shells, the formation of which can not be explained by rare elements alone 
but in any case requires the contribution of the abundant elements. 
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Table 3. Molecules observed in the circumstellar shells of dust forming late 
type stars by microwave emission (e.g. Olofsson 1988) 

Shells of M-stars 

He, CO 
OH, H20, SiO 

CS, SiS, SO, SO2, H2S, OCS 
HCO +, HCN, HNC,NH3 

Shells of C-stars 

H2, CO 
hydrocarbons 

CiN, CS, SiC, SIC2, SiS, HCO + 
HCN, HNC, CH3CN, HC3N, HCsN, HCTN 
HC9N, HCmN, C2H, C3H, C4H, ChH, C6H 
C3H2, C3N, NH3, C2S, C3S, HSiC2, NaC1 

A1C1, KC1, A1F 

Circumstellar dust often is observed at temperatures around 1000 K or 
even higher. In order for the dust grains to survive such hostile conditions, 
the dust material itself must form a so-called high ~emperature condensate, 
i.e. it has to consist of a substance which is able to form a macroscopic particle 
in this temperature range. 

These two criteria which are a natural outcome of the observations, have 
to be supplemented by an additional argument concluded from the process 
of grain formation, which essentially proceeds via a sequence of chemical 
reactions. For this being efficiently possible, the molecules involved in the 
various steps have not to be blocked by exceptionally high bond energies 
making them inert. Applying these criteria (abundant species, high temper- 
ature condensates, not too high bond energies) to the hierarchy of element 
abundances observed in an astronomical system yields the results for the 
condensing species and the primary condensates shown in Fig. 12. 

3.2.2 Grain  F o r m a t i o n  

Basically two philosophies of description are in use for describing the forma- 
tion of macroscopic grains out of the gaseous phase having both it shortcom- 
ings and its individual strengths. 

The first method is a thermodynamic point of view, conceiving the solid 
formation as kind of a phase transition taking place if the system trajectory 
crosses a borderline defined by specific critical conditions for the nucleation 
process, usually given by a suitably defined supersaturation ratio S = 1. A 
well-known example for this are the lines separating the various aggregation 
states in a phase diagram e.g. for water where a gaseous, liquid and solid 
phase may occur, which in a natural way explains the occurrence of mist, 
rain, and snowflakes. 



104 Erwin Sedlmayr and Jan Martin Winters 

log 8 

12 ~ H 

11 - ~ He 

1 0 -  

8 - -  N N e  
- " - - - ~ e ' -  Si- 

£C > 80 EC < £0 

relative abundance  

1 

10-1 

e c > e o  
condens ing  molecules  

C1, C2, ..., C2H, C2H2, ..., Fe 

primary condensates  
"carbon grains", "soot", 

graphitic structures,  PAHs, PACs, 
(SiC)N, (Fe)N 

10-3 

10 -4  EC < E O 
condensing molecules  

10 -5 SiO, MgO, Fe, AIO 

primary condensates 
"magnesium-iron--silicates" 

(SiO)N, (MgO)N, (Fe)N, (AI203)N 

Fig. 12. Abundance hierarchy of the elements. * means, that this element is 
a constituent of high-temperature condensates. The leading molecules in the 
grain formation sequence are underlined 

In all these situations for efficient dust formation to take place, a pro- 
nounced supersaturation ratio S = pi/pcl (where Pi is the (gas) partial pres- 
sure of the condensing species i, and Pel the corresponding vapor pressure of 
the considered cluster) considerably larger than unity has to be reached. 

Applying this concept to circumstellar grain formation shows that effec- 
tive grain condensation usually only occurs at temperatures far below the 
corresponding equilibrium lines thus indicating dust condensation to be a 
process which efficiently proceeds generally far from thermodynamical equi- 
librium, a finding being in total accordance with the general behavior of 
structure formation in nature. 

The second method is a chemical point of view, conceiving cluster forma- 
tion as the result of a sequence of chemical reactions, starting in a molecular 
domain and resulting finally at macroscopic specimens. From this microscopic 
point of view grain formation could be conceived naively as a complex net- 
work of chemical reactions leading under favorable conditions to more and 
more complex aggregates which finally grow to macroscopic particles. A re- 
alization of this method is however illusory not only due to the huge number 
of reactions involved (10 6 - 101°) but also due to the lack of important input 
data (reaction efficiency, sticking coefficients), not to mention the unrealistic 
computing time required for such an approach. For this reason, any successful 
chemical approach is restricted to the construction of some suitable chemical 
pathway being determined by the most efficient chain of reactions leading 
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from molecules to macroscopic clusters. This approach requires of course 
- the individual selection of the relevant molecules, 
- a detailed determination of their thermodynamic functions and 
- for each molecule the detailed discussion of its chemical reactions. 
In order to select a certain pathway, it is essential that it contains all rele- 

vant reactions, i.e. that reactions along the pathway are much more important 
than reactions with other molecules. In this case the pathway is well isolated 
and the concentrations of the chain molecules are determined by chain pro- 
cesses only. For a detailed application of the chemical pathway method to the 
formation of polyaromatic hydrocarbons (PAHs) in C-star winds, see Fig. 14. 

Irrespective of the specific treatment, the molecule--solid transition can be 
considered as a two step process which consists i) of the formation of small 
meta-stable clusters from gaseous molecules and ii) the growth of these clus- 
ters to macroscopic grains. This separation immediately follows from the 
thermodynamic properties of small clusters showing in the size-temperature 
space a critical limit line separating the regimes of dominant cluster evap- 
oration and growth, respectively. This critical limit line defines the critical 
cluster by the equilibrium between evaporation and growth for given temper- 
ature. Any grain formation has to surmount the critical cluster size in order 
to arrive at thermodynamically stable macroscopic grains (see Fig. 13). 

The regime with cluster sizes smaller than the critical cluster (i.e. where 
evaporation exceeds growth) is called the nucleation regime. In this regime, 
the properties of the clusters can not be described by simply applying bulk 
phase values but have to be determined by taking into account the individual 
structure of the clusters either from suitable calculations or from laboratory 
measurements (cf. KShler et al. 1996, Patzer et al. 1995). 

Detailed comparison of the time scales involved in the nucleation regime 
indicates that even in situations where moderate velocity fields are present 
usually the formation of the critical cluster i.e. the calculation of the nu- 
cleation rate, can be treated as a stationary problem (cf. Gall and Sedl- 
mayr 1988, Gauger et al. 1990). 

From (modified) classical nucleation theory in case of thermal and chem- 
ical equilibrium, the homogeneous nucleation rate J, is given by 

J.(t)- /(1,t)  Z(N.)exp ( N . - 1 ) l n S  (2) 
rgr(N,, t) R-T 'J 

where f(1, t) is the monomer density of the condensing species (e.g. the den- 
sity of C1 in the case of soot formation), (rgr) -1 the growth time scale of the 
critical cluster, N. the size of the critical cluster, Z the Zeldovich-factor (of 
order 1), S the supersaturation ratio and AG is in this notation the surface 
contribution to the Gibbs free energy change associated with the formation 
of the critical duster from the vapor. 

For homogeneous nucleation of monomers, (Vgr)-1 is simply given by the 
product of the monomer density and the rate coefficient for t h e  reaction 



106 Erwin Sedlmayr and Jan Martin Winters 

t 
I 
J 
t 

I, 

l[,o II 

) -  . . " ' t [ ~ i l u  " / / / / / / / I  
** 

** surface binding energy 
D 

m o n o m e r  cluster  s i z e  ] s o l i d  

Ts 

T,<T~ 

T2<T1 
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between clusters of size N, and the monomers. Gaff and Sedlmayr (1988) 
generalized this approach to account for arbitrary chemical reactions. The 
influence of thermal and chemical non-equilibrium in the gas phase on the 
nucleation rate is discussed by Patzer et al. (t996b). 

In the case of a chemical pathway approach the nucleation rate simply 
can be calculated by determining the rate of the slowest step on the most 
efficient pathway 

j. _ / (N. )  (3) 
T 

where f(N,) is the particle density of the critical cluster and ~- is the char- 
acteristic formation time of clusters of size N, from clusters of size N, - 1. 

Like in classical nucleation theory also in the pathway description the 
critical cluster determines a "bottleneck" separating the nucleation regime 
and the growth regime. This bottleneck has to be surmounted for effective 
grain growth to occur. 
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As an example of a chemical pathway, in Fig. 14 the formation of pol- 
yaromatic hydrocarbons (PAHs) is shown (Goeres 1993). 

÷C2H 2 +H • ÷H • 
HC -~. CH ----~HC ---~C ----~HC =---C--C=CH---~HC ----C--C------C > 

-H 2 -H-- • -H 2 / 
H H activated / *c2~2 

t:z:a'~tJ.cn//..~ .... C. .~ ~omp:h~ 
HC =C --C--C--C----C 

state ~ C  ._~.C / H 
H 

H H H H 

%C,~,_C / -a. %C-~-_C / -~- 

-It° 

It %1t - -  

Fig. 14. Chemical pathway to PAH formation (adopted from Goeres 1993) 

3.2.3 Gra in  Growth  

Well beyond the critical cluster in all cases under consideration grain growth 
can reliably be treated by a thermodynamic approach. In this context the 
number densities of grains of size N are conceived as "level populations" 
which are changed by gain and loss processes: 

d f(z, N, t) 
dt - t ~ ? -  R ,  + R * -  R t . (4) 

Figure 15 gives a schematic representation of the level diagram indicating 
gain and loss processes by transitions caused by the addition and the evap- 
oration of molecules, respectively. Due to these processes, the actual local 
occupation density f(z ,  N, t) of level N obeys an equation of continuity 



108 Erwin Sedlmayr and Jan Martin Winters 

transitions: 

N+3 

N+2 

N+I 

N 

N-1 

N-2 

N-3 

gain for loss for 
level N level N 

addition of molecules 
containing i "growth atoms" 

evaporation of molecules 
containing i "growth atoms" 

Fig.  15. Level representation of the cluster size space, possible transitions 
between the levels, and effective rates with respect to level N 

d f ( z ,  N, t) Of(z,  N, t) z I 
dt Ot -~d i v ( v f ( z ,N , t ) )  = ~ - ~ J ~ v , i ( z , t ) - E J g + i , i ( z , t  ) 

i=1  i=1  

(5) 
I with ~-~i=1 JN,i being the net gain rate of level N from the levels below 

and I is the maximum i-mer changing the cluster size. The time derivative 
d(.)/dt = O(.)/Ot + div (v .) on the 1.h.s. comprises both the explicit change 
with time and the net gain due to surface fluxes via the mass flow of velocity 
V. 

The rates JN,i are given by 

(6) 

where f(i) is the density of the growth species, vlv-i,i is the relative velocity 
between growth species i and a cluster of size N - t ,  AN- i  is the surface 
of a cluster with size N - i, ag- i , i  is the respective sticking efficiency, and 

(.) denotes the respective distribution function in thermal equilibrium. 
In (6) LTE is assumed. More general expressions are discussed in Gall and 
Sedlmayr (1988), Gauger et al. (1990), and Patzer et al. (1996b). 

In most astrophysical applications it is not necessary to solve the full 
network of rate equations (5) but it is sufficient to define suitable moments 
by summation over the cluster size space according to 
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Ymaa: 

I( 5 ( x , t ) -  E NJ/df(x'N't)  ( j - 0 , 1 , 2 , . . . )  (7) 
N=N~ 

with d being the dimension of the considered clusters (d = 3 for 3-dimensional 
particles, d = 2 for 2-dimensional, e.g. flat particles) and Nl is a lower limit 
size for the dust grains to be considered as macroscopic particles (usually 
Nt ~ 1000). Introducing these moments into (5) yields the system of moment 
equations describing grain growth in arbitrary moving media 

dKJdi; -- d3gr R'j-1 + N~/dJN' 

where the time scale for particle growth is given by 

(s) 

I ± 
-- E Atviaiif(i) . (9) 

Tgr i----1 

A good approximation for this system, applicable to most astrophysical 
situations is given by 

dKj = ] J" ' j=O,  

dt I - L - K  , T~rU 3-- 1 j > 0 , 

The first four moments have simple physical interpretations: 

(lO) 

K0 - nd -- dust number density 

K1 < N 1/d >c<< size > 
K0 

K2 N2/a = < >oc< surface > 
K0 
K3 N3/d d=3 - -  = < > c¢ < volume >c¢ extinction coefficient . 
K0 

3 . 2 . 4  C l u s t e r  S i z e  S p e c t r u m  

In the case that  grain evaporation can be neglected (e.g. in a stationary wind) 
the moment equation for j = 0 

dKo 
= J ,  (11) 

dt 

allows a straight-forward calculation of the grain size spectrum f(N) (a com- 
plete treatment including the effects of grain evaporation is given in Gauger 
et al. 1990): 
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The growth of an individual grain of size N simply is given by: 

dN 1 N~_~ 
dt - "rgr 

from which we get 

(12) 

d(N 1/d) 1 
- -  - ( 1 3 )  

dt d rsr 

Defining the grain radius by a = aoN 1/a, where a0 is the hypothetical 
radius of a monomer, we obtain for the time evolution of the particle size 

da 1 ao 
- (14) 

dt rgr d 

Now assume that  a cluster is created at time to with size N.. With this 
initial condition, (13) immediately can be integrated: 

N(t,  to) denotes the size of the particle at time t, which has formed with 
size N. at time to. Due to our assumption of monotonic growth, M1 particles 
smaller than N(t,  to) at time t must have been created later than to. Thus, 
for the number of particles with sizes between iV. and N(t,  to) we obtain 

AKo(N,,  N(t,  to)) = dKo = f ( N , t ) d N  = 
o J N .  

Differentiating (16) with respect to to yields 

d(Y(t ,  to)) f ( g ( t ,  to), t) . 
J, (to) = dto 

Solving this for the distribution function f( t ,  N) yields 

J . ( t ' )d t ' .  (16) 

(i7) 

f (N( t , to) , t )  = ( d(N(t ' t°)) '~ -1 ,-d dto ,] J.(to) = "rgr(to)N(t, to)--z-J.(to) , (18) 

where the second equality follows from (15). 
Thus, in an actual model calculation, one just has to integrate (12) along 

the flow trajectory (i.e. in each fixed volume element) and to store the current 
values of or. and rgr in order to obtain the current size distribution in each 
gas element. As an example, Fig. 16 depicts the size distribution function 
resulting from a model calculation for a stationary dust driven wind (see 
Sect. 4.3). 



Cool Star Winds and Mass Loss: Theory 111 
a. b,m] 

0.001 0.01 0. I I 10 I00 i000 
- 5  ~ ~ ~ ~ ~ L - 5  

- i 0  - 1 0  

~ - 1 5  - 1 5  "~" 

- 2 0  - 2 0  

-25 , I , i  ' -25 
0 i 2 3 4 5 6 7 

l o g (  a . / a  0 ) 

Fig.  16. Grain size distribution function in the outer region of a stationary 
dust driven wind model, aoo is the final particle size reached in an outer 
volume element, where grain nucleation and growth have ceased 

For this calculation, the grains are assumed to consist of amorphous 
carbon and classical nucleation theory (cf. Sect. 3.2.2) has been applied to 
calculate the grain formation rate. The resulting size distribution function 
can well be approximated by a power law f ( a )  o¢ a - s  in the size range 
0.05#m < a < 100#m, a typical result for a stationary dust driven wind (see 
Dominik et al. 1989). Although most particles have radii of about 0.05/~m, 
there exists a considerable number of particles having much larger radii. 
These large particles are formed in the innermost region of the circumstellar 
dust shell (inside the sonic point), where the outflow velocity is still small 
and, therefore, the particles remain for a rather long time in a region of fa- 
vorable growth conditions (for a detailed discussion see Dominik et al. 1989 
and Winters et al. 1994a). 

4 M o d e l i n g  of D u s t  Shel ls  Around  L a t e - T y p e  Giants  

In this section we present the self-consistent description of cool, extended 
dust forming circumstellar shells, including a detailed treatment of 

- hydrodynamics 
- thermodynamics 
- radiative transfer 
- chemistry 
- dust nucleation and growth. 
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The complete problem to be treated is sketched in Fig. 6. In the following 
we give the mathematical formulation of this problem and present typical 
numerical results for stationary dust driven winds and pulsating atmospheres 
around long-period variable stars. In both cases, spherical symmetry of the 
central star and its surrounding shell is assumed. 

4.1 Basic  Equa t ions  

4.1.1 H y d r o d y n a m i c  Equa t ions  

From the law of mass conservation, the equation of continuity is given, which 
in spherical symmetry reads 

o-7 + (r Pv) = 0 .  (19) 

Here, t is the time, r is the radial coordinate, p(r, t) is the mass density 
and v(r, t) is the outflow velocity. In a s t a t i ona ry  s i tua t ion  (i.e. 0 /0t  = 0), 
(19) can be integrated to yield 

dr'4~rr '2 r'2pv = 41rr2pv = const = M , (20) 

where /~/ is the integration constant, describing the total mass transport 
through the surface of radius r. Thus, M is the mass loss rate of the star. In 
general, the value of the mass loss rate depends on the fundamental stellar 
parameters: stellar mass M., stellar luminosity L., stellar temperature T., 
and the element abundances {ei}. 

Momentum conservation provides us with the equation of motion: 

Ov Ov 10p 
~ - 4 - V a r -  p 0 r  q-a (21) 

with p(r, t): thermal pressure and a(r, t): acceleration due to external forces. 
For the conditions typical of a circumstellar shell, the equation of state, 

relating thermal pressure, mass density, and gas temperature, is given by the 
ideal gas law 

P P = kT (22) 
/~rnH 

with p(r,t): mean molecular weight, T(r,t):  gas kinetic temperature, and 
rnH: mass of a hydrogen atom. 

The acceleration a (r, t) usually consists of the contribution of two different 
external forces 

a - -  - g  + ara d 

with the local (inwards directed) gravitational acceleration 
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G M ,  + M~(r,t) 
(24) 

g = r2 

caused by the stellar mass M. and the mass contained in the circumstellar 
shell inside the radial surface at r 

Ms (r, t) = dr'4rrr'2p(r ', t) (25) 

and the (outward directed) radiative acceleration arad( r ,  t )  of the matter due 
to photon momentum extinction. In practice, (23) is usually written as 

with 

a = - g ( 1  - a )  (26) 

O t ( r , t ) -  arad _ 4~r XHr2 H (27) 
g cGM,  p 

being the radiative acceleration measured in units of the local gravitational 
acceleration. The quantity H is the frequency integrated Eddington flux 

f H - dteH. (28) 

and XH the flux-mean extinction coefficient 

XH = -ff dux ,H~  . (29) 

The extinction coefficient 

x .  = ~ + s .  (30) 
is the sum of the absorption coefficient ~ and the scattering coefficient 
sv. Both, ~ and s~ consist of all respective contributions from the gaseous 
species and the various dust components. 

The absorption and scattering cross sections of a dust grain is huge com- 
pared to those of an atom or molecule. Therefore, if a noticeable amount of 
dust is present in a stellar atmosphere, it completely dominates the transport 
coefficients. 

The transport coefficients of the dust components depend on the local 
size distribution of the grains: 

X~ = daf(a)aac×t (t,, a) 
£ 

f d daf(a)trdsca(t:, a) 
£ 

d d d daf(a)cr bs(", a) ~Cu = X u - -  su ~ 

(3~) 

(32) 

(33) 
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The cross sections crd. usually are expressed as the product of the geomet- 
ric cross section rra 2 of the particle (assumed here to be spherical with radius 
a) and an efficiency Q describing the interaction with the radiation field. 
These efficiency factors follow from Mie theory (see e.g. Bohren and Huffman 
1983) and the size distribution function f(a) is calculated according to the 
method given in Sect. 3.2.4. 

For grains small compared to the wavelength of the radiation field (i.e. 
a << ,k/2rr) the small particle limit of Mie theory applies and the transport 
coefficients can be written as 

X d = A(v) / d a  a3f(a) = A(v)K3 (34) 

d B(v) / d a  a6f(a) S(v)I<6 (35) 

while in the opposite case of the large particle limit of Mie theory (i.e. a >> 

d d / d a  7ra2f(a) = rr/~2 = 1 d (36) tcv = su = "~Xv 

holds. The "radius" moments 

I<j = / d a  air(a) (37) 

are related to the moments Kj defined in Sect. 3.2.3 via 

I~j = aJoKj j=0, 1, 2 , . . .  (38) 

where a0 is the hypothetical radius of a monomer contained in a grain. 
In a stationary situation, it is convenient to transform the equation of 

motion (21) into the so-called wind equation. This is accomplished by intro- 
ducing the isothermal sound speed 

c~, = P- (39) 
P 

and making use of the equation of continuity (19) (where of course Op/at = 
0!). The result is 

Ov 2c2 OC?r 
(v 2-c~)  ~r = r T Or g(1 - - a )  (40) 

with the critical point r: defined by the (implicit) conditions 

v(rc) = cr(rc) (41) 
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and 

c~.(r~) - (Or ~o - g(r¢)(1 - a(r~)) = ¢(r¢) = 0 (42) 

(see also the lecture of H. Lamers, this Volume). If we neglect the temperature 
variation in (42), re is determined by the implicit equation 

with the escape velocity at the stellar surface 

ve = [2R.g(R.)] 1/2 (44) 

Self-consistent model calculations indicate, that  for a dust driven wind 
the second term in (43) is always small compared to unity (thermally stable 
atmosphere!), i.e. 

is a necessary condition for a dust driven wind to exist. 

(45) 

4.1.2 T h e r m o d y n a m i c  E q u a t i o n s  

The law of energy conservation provides us with an equation for the temper- 
ature of the gas and the dust. The balance equation for the thermal energy 
is given by 

o---7- + (  pvh) - v N  = (46) 

where e is the specific energy and h = e + p/p  the specific enthalpy with 
h = cpT for an ideal gas. cp is the specific heat for constant pressure and 
Qe the local net energy input rate per unit volume due to external energy 
sources. 

In the stationary case, (46) can be written as 

or = (47) 

where (20) has been used. 
In a stationary dust driven wind radiative equilibrium holds (i.e. Qe = 0), 

and the source term in (47) can be written as 

where the gain and toss rates (Fe and A~) are given by the absorption and 
emission of radiation energy. In writing (48), elastic scattering of the photons 
is assumed. J~ is the monochromatic mean intensity of the radiation field 
(cf. (51)) and eL, is the emission coefficient (g and d refer to the gas and the 
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dust component, respectively). In many cases the dust component decouples 
thermally from the gas and the energy balance for the dust alone is given by 

// // // d.  ~.J.d = du e d = du ~ B ~  (T d) (49) 

where B~(T d) is the Kirchhoff-Planck function at the internal dust tem- 
perature T a. Equations (48) and (49) are an implicit system for the "gas 
temperature" T(r)and the "dust temperature" Td(r). 

4.1.3 R a d i a t i v e  Transfer  

For the situations considered here, it is sufficient to consider the stationary 
radiative transfer equation (i.e. Oil~Or = 0), since the transport coefficients 
vary on a time scale which is longer than the time needed for the photons to 
travel through the region where these changes occur. In the case of isotropic 
absorption, scattering and emission, the stationary radiative transfer equa- 
tion in spherical symmetry is given by 

+ - - - -  ( 5 0 )  
# Or r 0# 

with the angle variable # = cos 0, where 0 is the angle between the radial 
vector and the direction of light propagation, and the monochromatic mean 
intensity defined by 

1 f+t 
J~(r) : 2 J-1 d#Iu(r,#) . (51) 

For given transport coefficients, the partial integro-differential equation (50) 
has to be solved numerically for the specific monochromatic intensity I .  (r, #). 
This can be accomplished e.g. by the Feautrier method, which involves an 
iteration between the solution of (50) along the characteristic paths and the 
equations for the moments of I~ (r, #) defined by 

d/~ #~I.  (r, #) (52) = 1 

(for details see the standard textbook by Mihalas 1978). 

4.1.4 C h e m i s t r y  

In general, the number densities of the molecules are given by the solution 
of the chemical rate network (i) (see Sect. 3.1). In the special situation of 
chemical equilibrium, the rate network is replaced by the law of mass action 
which, if completed by the conservation of the elements reads 

N 

n<i> - ~ uiujninjKeq(i, j) = 0 , (53) 
j = l  
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where vk are the stoichiometry coefficients and Keq is the equilibrium con- 
stant. 

4.1.5 D u s t  F o r m a t i o n  and G r o w t h  

As discussed in Sect. 3.2, formation and growth of dust grains is described 
by the set of moment equations 

dK0 
d$ 

j 
dt dfgr 

Kj_  (54) 

which by consumption of the dust forming elements is coupled to the chem- 
istry. In the simple case of homomolecular, homogeneous condensation of 
carbon, the consumption equation is given by 

dn<c> dK3 
- ( 5 5 )  

dt dt 

The chemistry and dust complex are solved considering a fixed mass ele- 
ment, i.e. in a co-moving frame (remember: d. ~dr = O. ~Or + div(.v)) 

The fundamental equations given in this section form the complete set 
necessary for the modeling of dust forming circumstellar shells. Of course, 
this set has to be solved by applying suitable boundary conditions, and in 
the case of a time-dependent description, also suitable initial conditions. 

4.2 Exte rna l  Pa rame te r s  

The self-consistent solution of this set of equations (i.e. the shell model) is 
completely determined by the prescription of 4 fundamental stellar parame- 
ters, e.g. the sets given in Table 4. 

Table 4. Examples for different combinations of parameters describing a 
dust driven wind 

M. or 54. or M. or A;/ 
T, M R, T, 
L. L. L. L. 

etc. 

Depending on the specific problem a suitable set of basic parameters is 
chosen. Besides these 4 prescribed parameters all other quantities are deter- 
mined by the solution of the set of fundamental equations. Results of this 
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approach applied to stationary dust driven winds are given in Sect. 4.3. For 
the time--dependent modeling of circumstellar dust shells around pulsating 
long-period variable stars, assumed to exhibit a sinusoidal temporal varia- 
tion inside the photosphere, two additional parameters have to be prescribed 
in order to simulate the pulsation of the star. This is necessary, since the 
current models only describe the circumstellar dust shell (CDS) but not the 
region well inside the photosphere, where the pulsation of the star is gen- 
erated. Results of these time-dependent model calculations are presented in 
Sect. 4.4. 

4.3 S t a t i o n a r y  Dus t  Driven W i n d s  

4.3.1 T h e  M i n i m u m  Mass  Loss  R a t e  

In a dust driven wind, the only driving mechanism of the outflow is radiation 
pressure on the dust grains which is transferred to the ambient gas by mo- 
mentum coupling between dust and gas. Other effects, like momentum and 
energy input to the atmosphere by wave dissipation are neglected. Therefore, 
we can derive a minimum luminosity or, equivalently, a minimum mass loss 
rate which has to be surmounted in order for a dust driven wind to exist 
(cf. Gaff and Sedlmayr 1987, Dominik et al. 1990). From the definition of the 
radiative acceleration (27) we get 

47~ _ XH r 2 H  
cG M .  p 

_ 4~r X H R 2 H .  
c G M ,  p 

XH L .  
- 4rrcGpM. 

(56) 

where the condition of radiative equilibrium 

r2H(r )  = const -= R2.H, (57) 

and the definition of the stellar luminosity 

L, = 167r2R.2H. (58) 

have been used. If dust is present, the extinction coefficient XH is essentially 
given by the dust component (i.e .'(g ~ X d)  which is proportional to the 
local amount of dust, i.e. the degree of condensation fc: 

K3 _ Xt t  A -  (59) 
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Inserting (59) into (56) yields 

X~ ax 
~ = f ¢  L, 4~rcGpM. 

L, 
= f c ~  

Ledd 

(60) 

(61) 

where we have defined the so-called Eddington luminosity 

4rccGpM. 
L,dd - (62) X~ a× 

which is the maximum luminosity for an atmosphere stable against radiation 
induced expansion (cf. (26): a = 1 ~ a = 0!). 

According to (45) a dust driven wind requires 

A(~C)L-~d > 1 .  (63) ot (rc) 

Thus, for a given value of fc we get the desired minimum luminosity required 
to drive the wind solely by radiation pressure: 

Lmin __- Ledd 
fc(rc) " (64) 

The r.h.s, of (64) is essentially determined by M, and A~f. Since fl~f is a 
function of the stellar parameters (M = f(L,, T,, M,, { . . . ,  c i , . . .})) ,  for given 
stellar mass M, and element abundances { . . . ,  ~i . . . .  } a contour line 

/1~/min = f ( L .  min , T.) (65) 

of minimum mass loss rate exists in the HRD, which confines objects produc- 
ing dust driven winds to the region above this limiting line, i.e. to the region 
of high luminosities. This minimum mass loss rate typically is of the order of 
1 0 - 7 . . .  10-6Moyr  -1. 

4.3.2 Typical  Shell  S tructure  of  a D u s t  Dr iven  W i n d  

Figure 17 shows the radial structure of a dust driven wind model designed 
to describe the observational data  of the prototype of extreme carbon stars 
IRC +10216 (Winters et ah 1994a). 

The formation of dust grains starts around 1.4R0 (R0 = 9.25 • 1013cm), 
which leads to a steep increase of the dust extinction XH and, therefore, of the 
radiative force accelerating the dust grains. By momentum coupling of the 
grains to the surrounding gas, the momentum gained by the dust particles 
is transferred to the gas. This process results in an outward directed net 
acceleration (a > 1 for r > 2.25R0) of the grain-gas mixture leading to an 
increasing outflow velocity v of the material. The transition from sub-sonic 
to supersonic motion occurs at r = rc -'- 2.2Ro where a reaches a value of 
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M, = 0.7 Msu n L. = 2.4"104 Lsu n 

1~1[ = 8"10 -5 Msu n E c / E o = 1.40 

0 5 10 15 20 
2 1 - a ' ' ' l  . . . .  I . . . .  I ' ' ' ' - 1 - 9  . - .  

l a l  
. x ~  - 1 2  

i o I : ,1 , , , , ,  , , " 'z--~ . ' --=~--,  , ~ - 1 8  
I~ . . . .  ' . . . .  ~ . . . .  ' . . . .  -11o 

20  F- v _~ 

15 . . . .  

.~. l o ~  ~ 1  5 
> 5 v.~ 

2000 2000 

z 1ooo \ 1 looo 
,oo - .... , ooo 

0 5 10 15 20 

r/a0 

Fig.  17. Radial structure of a stationary dust driven wind model for 
IRC +10216. U p p e r  d i a g r a m :  flux-mean extinction coefficient XH of the 
dust component (solid line, 1.h.s. ordinate) and logarithm of the density p 
(dashed line, r.h.s, ordinate); m i d d l e  d i a g r a m :  hydrodynamic velocity v 
and velocity of sound CT (solid line, l.h.s, ordinate) and radiative acceler- 
ation in units of the local gravitational deceleration a (dashed line, r.h.s. 
ordinate); lower  d i a g r a m :  temperature of the gas (solid line) and the dust 
component (dashed line) (adopted from Winters et al. 1994a) 

0.75. Around 3R0 the wind velocity exceeds the local escape velocity vest. 
The atmospheric material, therefore, is lifted out of the stellar gravitational 
field within the first two stellar radii above the photosphere. The final outflow 
velocity of 20.7 kms -1 is nearly reached at 20R0. 

The essential acceleration of the material occurs in the region between 
2Ro and 5 R0. In the region of effective dust formation and growth (around 
r = 2.5R0) the gas temperature is Tg ~ 1300K, while the mass density in 
this region is about 10-14gcm -3. Thermal dust emission from the inner edge 
of the circumstellar shell heats the gas inside the dust formation zone. The 
dust opacity, thus, leads to a substantial backwarming which results in an al- 
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most constant temperature throughout the region of effective dust formation. 
The size-independent dust temperature T d (cf. (49)) exceeds the (grey) gas 
temperature. The temperature difference produced by this greenhouse effect 
increases with increasing distance from the photosphere. The temperature 
difference between gas and dust reaches a maximum value of about 50K in 
this model. 

IRC +10216 

M, = 0.7 Msu n L, = 2.4"104 Lsu n 

~I = 8"10 -s Msu n £c / EO = 1.40 
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Fig. 18. Emergent spectrum of the dust shell model described in the text 
(solid line). The observed data for IRC +10216 are taken from Le Bertre 1987 
and references therein (A), Sahai et al. 1989 (El) and Walmsley et al. 1991 
(×) 

In Fig. 18 the spectral energy distribution produced by the dust shell 
model is shown together with observed photometric data of IRC +10216. 
This source is known to be variable with a period of ,-, 640d (Witteborn 
et al. 1980; l~,idgway and Keady 1988). "]?he symbols shown in Figs. 18 rep- 
resent fluxes measured near the maximum of the 2.2/~m light curve. The 
calculated spectrum results from assuming amorphous carbon described by 
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the complex refractive index tabulated in Maron (1990). The outer boundary 
of the dust shell model is located at 2. 103R0 which corresponds to a distance 
from the center of the star of 1.85 • 1017cm. The synthetic spectrum of this 
model is in close agreement with the observed spectrum of II=tC +10216 in 
the wavelength region between 2#m and 5cm. In the near infrared region 
short-ward of A ~ 2/zm the calculated spectrum decreases much too steeply 
as compared to the observed fluxes. This behavior may be due to the exis- 
tence of rather large dust particles in the inner part of the dust shell model, 
which is a result of the assumption of stationarity. A second, probably more 
important reason could be our assumption of spherical geometry, which can- 
not account for possible 'holes' in the dust shell, which would produce smaller 
optical depths along certain lines of sight in direction to the central object. 
In consequence, short wavelength radiation originating from the photosphere 
could escape through such holes and thus could lead to an emergent short 
wavelength flux which is possibly considerably enhanced compared to the 
flux resulting from a spherically symmetric model. From the absolute values 
of the calculated and observed fluxes we derive a distance to IRC +10216 of 
d = 170pc. 

4.3.3 D e p e n d e n c e  o f  the  Mode l s  o n  t h e  Stellar  P a r a m e t e r s  

Generally, the stationary dust driven wind represents the solution of a fully 
coupled non-linear problem which results in a rather intricate dependence of 
the models on the individual stellar parameters. In the following, we describe 
the qualitative dependence of important shell characteristics on the param- 
eters chosen (M. ,  L . ,  M ,  ec /eo ,  the other elements (including oxygen) are 
assumed to have solar abundances). In the following, ]" means increasing, $ 
means decreasing. (An explicit description of these dependences is given in 
Winters et al. 1994a.) 

s tel lar  mass  /14.: 
For realistic values, M, has only a minor influence on the model structure 
and the shell spectrum. However, for each given luminosity L,, there exists 
a maximum mass M,,max above which no dust driven wind exists. 
M. q* --+ voo $ --+ grain growthj" --+ fc 1" --+ X~ ax t -+(absorptionq" and T, $) -+ 
"cooling" of the spectrum 
M, t--+ (a c¢ l /M, )  $ (almost linear, cf. (27)) 

stel lar l u m i n o s i t y  L,: 
L. t--+ a ]" (cf. (56))--+ v ]" (inside the sonic point)--+dilution t--+ collision 
rate $ -+ effective growth $ -+ (grain size, fc) $ -+ XH $ -+ aoo ec L.  (X.H/P) 
nearly unchanged and voo nearly unchanged 
L.  t-'+ . . .  ~ XH $ (~H $) "+ r $--+ shell more transparent 
L. ]'-~ T. 1", together with the above --~ "hotter" spectrum 
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Mass  loss r a t e  M: 
M t -'+ P t -~ collision rate1" -+ growth t ~ grain size1" --~ fc t --~ X~ r, ~ar t -+ 
a.(r >sonic point) t - +  voo 1" 
M t -+ • • • -'+ Xg, ~/z 1" --+ shell spectrum becomes "cooler" 

C a r b o n  a b u n d a n c e  ¢c. 
ec i"-~ ( c o -  co) 1"--+ (nc = K~ nax = ( e c -  eO)n<H>) S a n d J  max 1" 

fc ~ ~ XH t --+ a "~ ~ v "r 1 --+ dilution~ ~ collision rate in co-moving 
elements -~ growth J, --+ grain sizeJ~ 
1result: voo = A(T., L.) ~c-$o 
hence: ec T -'+ /~Ashortd 1. _.+ (NIR and visible light)J, and simultaneously edlong 1" 
-~ (FIR emission)l". 

In the preceding section, we have chosen the quadruple M.,  L . ,  ]~r, 
{ . .  ei , . . .} as the set of parameters. Choosing the set M.,  L. ,  T., { . . .  e i , . . .}  
allows a direct investigation of the dependence of the mass loss rate on the 
classical stellar parameters. The result is, that the mass loss rate of a dust 
driven wind increases with increasing stellar luminosity, decreasing stellar 
temperature and decreasing stellar mass. Since the AGB evolution leads to 
increasing luminosities and (slightly) decreasing temperature, the mass loss 
rate strongly increases along the AGB evolution of a star. The mass loss 
process is self-accelerating: due to mass loss, the mass of the star decreases 
which leads to a further increase of the mass loss rate] The model calculations 
allow to derive a theoretical mass loss formula for dust driven winds: 

(~_~*Q T * )  2"59M°/M°+l"7"l 
~/[Moyr  - t ]  = 10 -3"T-°'93M./Mo. log( ) 60"oK (66) 

(see Dominik et al. 1990). For more details about dust driven winds we refer 
to the review by Sedlmayr and Dominik (1995). 

4.4 D y n a m i c a l  Mode l s  for  D u s t  F o r m i n g  Shells  
A r o u n d  L o n g - P e r i o d  Var iab les  

Although the stationary models are very successful for explaining the overall 
structure and appearance of dust forming AGB star shells and also clearly 
demonstrate that  dust driving alone is capable of explaining the observed 
high mass loss rates and low outflow velocities of these objects, they of course 
neglect the effects introduced by the pulsation of the central stars. That  these 
effects might be important can be inferred from several facts: i) We have seen 
that a purely dust driven wind is only possible for objects having luminosities 
higher than the Eddington luminosity defined by (62). Observations indicate 
that AGB stars with lower luminosities also produce massive, low velocity 
outflows, ii) Due to their evolutionary state, stars evolving along the AGB 
are unstable against pulsation, i.e. most objects on the AGB generally are 
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long-period variable stars, iii) There exists a clear correlation between the 
infrared excess (measuring the amount of dust) and the variability of the 
object (Jura 1986, see Fig. 19). 

Number 
of stars 

70 

50 

30 

10 

pulsating objects 

non-variable objects 

m 

Fv(12 pm) Fv(12 pro) 

< 0.1 ~ 2 o .  1 
Fv(2 ~m) Fv(2 ~m) 

Fig. 19. Observed correlation between infrared excess and variability (after 
Jura 1986) 

The momentum and energy input to the atmosphere by dissipation of 
shock waves (generated by the pulsation of the star) alone is not able to 
drive an outflow with the observed properties (e.g. Wood 1979). Therefore, a 
two step mechanism has been proposed as being responsible for the mass loss 
of LPVs (Jones et al. 1981): i) levitation of the atmosphere by dissipation 
of shock waves and ii) subsequent acceleration of the material by radiation 
pressure on dust. The first consistent models for dust forming shells around 
LPVs have been presented by Fleischer et al. (1992). These models include a 
consistent, simultaneous treatment of time-dependent hydrodynamics, (equi- 
librium) chemistry, dust formation, growth and evaporation and of the (grey) 
radiative transfer problem. Since in these models only the outer regions of 
the star (starting inside the photosphere) are modeled, the pulsation of the 
star itself has to be simulated by a suitable (inner) boundary condition. This 
boundary condition is provided by a so-called piston approximation: The 
velocity at the innermost grid point is assumed to vary sinusoidally with 
prescribed period P and velocity amplitude Au. Therefore, these models are 
described by a set of six parameters, comprising the four fundamental stellar 
parameters M,, L., T., { . . . ,  ci, ...} and the parameters describing the stel- 
lar pulsation P, Au. The equations are written in Lagrangian coordinates and 
the calculation is started with an initially hydrostatic dust free atmosphere 
as initial condition (details are given in Fleischer et al. 1992). 
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4.4.1 Radia l  Shell  Structure  of  a Time--dependent  Mode l  

Figure 20 shows the radial shell structure for a model calculation with the 
parameters M. = 1M®, L. -- 104Lo, T. = 2600K, ec = 1.80co (solar 
abundances for the other elements), P = 650d, Au = 2kms -z at a fixed 
instant of time. (This model is henceforth called Model A). 

The following quantities are plotted: upper  diagram: the velocity v 
(solid line), velocity of sound CT (dotted line) and the temperature T (dashed 
line), middle  diagram: the logarithm of the density p (solid line) and the 
degree of condensation fc, i.e. the fraction of condensible material actually 
condensed into grains (dashed line) (cf. (59)), lower diagram: the logarithm 
of the nucleation rate per H-atom J,/n<H>, i.e. the number of dust grains 
formed per second and H-atom (solid line) and the logarithm of the number 
of dust grains per H-atom nd/n<H> (dashed line). Radii are always given in 
units of the stellar radius R0 of the initial hydrostatic model. 
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Fig. 20. Radial structure of consistent model for a pulsating, dust forming 
circumstellar shell 

The consistent calculation of dust formation, grain growth and evapora- 
tion shows up to have significant influence on the resulting dynamic structure 
of the CDS. 
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As the degree of condensation and the number of dust grains per H-atom 
in Fig. 20 show, the dust is distributed inhomogeneously across the shell. The 
dust grains are concentrated in distinct layers and exhibit a shell or onion- 
like structure which is closely related to the hydrodynamic structure, e.g. the 
velocity profile of the CDS. 

Figure 20 also shows the determining influence of the dust on the ther- 
modynamic structure of the CDS. There are several steps in the course of 
the temperature which coincide with spikes in the degree of condensation. 

The discrete structure of the atmosphere is not produced solely by the 
shock waves caused by the interior pulsation of the star, but is a very product 
of the process of dust formation. In a first step the interior pulsation defines 
the onset of dust formation by providing appropriate low temperatures in the 
region between 3 and 4Re. In a second step pulsation triggers grain growth by 
a compression of the material in this radius interval and, thus, provides the 
high densities favorable for the growth process. In a short time interval values 
of fc as high as 1 are reached, i.e. all of the condensible material is actually 
condensed into grains. The radiative acceleration a is directly proportional 
to the degree of condensation fc (cf. (60)). Since the grains are closely mo- 
mentum coupled to the gas, the sudden increase of the radiative acceleration 
causes a perturbation in the velocity field which steepens to become a shock 
wave, thereby compresses the material and, in turn, accelerates dust growth. 
Thus, the prominent shock waves which propagate through the atmosphere 
(cf. upper diagram of Fig. 20) are produced by a self-accelerating mechanism 
caused by the interaction between dust formation and hydrodynamics. 

Furthermore, the newly formed dust in the inner shells, due to its opacity, 
effectively blocks the outgoing radiation and heats the material located closer 
to the star. This backwarming, seen as steps in the temperature structure 
in the upper diagram of Fig. 20, also influences the formation of new dust 
particles. Caused by the enhanced temperature inside the innermost dust 
layer, the formation of new particles is confined to a rather narrow spatial 
region as can be seen from the course of the nucleation rate J ,  (lower diagram 
of Fig. 20). 

Due to pulsation and backwarming, dust formation and growth is only 
possible in a small radius range and during a limited time interval. This 
results in the discrete structure of the CDS. The complex interplay among the 
processes of dust formation and growth, hydrodynamics and thermodynamics 
shows that the dust particles play the key role in determining the atmospheric 
structure of LPVs and Miras. 

4.4.2 Tempora l  Behavior  of  the  Models  

The model described in the preceding section (Model A) forms a new dust 
layer every piston period P. There are, however, also models, which produce 
new dust layers on a longer time scale, depending on the values chosen for 
the model parameters. This time scale is in particular sensitive to the amount 
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of dust formed, i.e. to the carbon abundance ec: the lower the carbon abun- 
dance, the longer the time interval between the formation of two successive 
dust layers becomes. Therefore, the formation of a new dust shell can take 
place every hydrodynamic period (as in Model A), but also every second, 
third . .. pulsational period, i.e. the radial structure of the CDS at a certain 
instant of time t = t ip  equals the structure at t = (~ + n p ) P ,  where fl is an 
arbitrary dimensionless time parameter and np = 1, 2 , . . .  is the rnultiperi- 
odicity number. (In general, np is not an integer number!) The formation of 
dust layers on time scales different from the pulsation period of the star leads 
to observable consequences e.g. for the light curves of these objects. As an 
example, Fig. 21 shows the light curves for Model A and a model calculated 
for the parameters M. = 111//o, L. = 3 .  104Lo, T. = 2450K, ec -- 1.25eo 
(solar abundances for the other elements), P = 621 d, Au = 3 kms -1 (Model 
S). 
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Fig.  21.  Theoretical light curves (in magnitudes, relative to the mean magni- 
tude) of Model A (1.h.s. diagrams) and Model B (r.h.s. diagrams) at different 
wavelengths. Note the different scaling of the ordinate at different wave- 
lengths 

From the periodic occurrence of the different intermediate structures in 
Model A (1.h.s. diagram) at short wavelengths A < 2.2pm and at long wave- 
lengths A > 2.2#m it can be inferred that the formation of a new dust layer 
periodically takes place during every second half of each hydrodynamic cycle. 
The light curves at wavelengths A > 2.2#m show a slightly asymmetric shape 
and exhibit an internal structure on the rising branch which regularly oc- 
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curs and is even more pronounced towards longer wavelengths. All curves are 
characterized by a periodic re-occurrence of all features at the same phase 
during the sequence of hydrodynamic pulsation cycles. 

In contrast to Model A, Model B exhibits a different behavior. Model B 
shows a quasi--sinusoidal variation on the time scale of one putsational period 
which is superposed by a long-scale oscillation on a time scale of 5 pulsation 
periods. In principle, the process of the formation of a new dust layer is the 
same in Models A and B. The difference is the time scale: The formation of 
a fully evolved new dust layer takes a time interval of five pulsational cycles 
in Model B, compared to one pulsational cycle for Model A. 

A behavior similar to that produced by Models A and B has also been 
found in the observed light curves of real objects, e.g. for the carbon-rich 
objects AFGL 1085 and 1~ For (Le Bertre 1992). 

The characteristic feature of the AFGL 1085 light curves is the occurrence 
of intermediate extrema, already noted by Le Bertre (1992). With respect to 
the model calculations, these intermediate structures could be caused by the 
sudden formation of a new dust layer similar to Model A. 

The light curves of R For show a systematic drift in magnitude very similar 
to the multiperiodic Model B. Secondary variations with periods multiple 
times longer than the main period have also been found in the light curves of 
several other objects by Alksnis (1990). In terms of the model calculations, 
this behavior could be explained by the interplay of two distinct processes 
with different time scales: The regular pulsation of the star, which provides 
the "short" hydrodynamic time scale, and the process of dust formation and 
growth, which, under the conditions of Model B, has a time scale five times 
longer. Thus, the CDS can be conceived as a dynamic system under the 
influence of an external excitation mechanism, or, to use a simple analogy 
from classical mechanics, the CDS behaves similar to a pendulum, which is 
subject to a periodic external force. 

Irrespective of the different long-term behavior of the light curves result- 
ing from both individual models and also independent of the different shape- 
variations with wavelength of the light curves of each individual model, the 
light amplitude decreases with increasing wavelength (cf. Fig. 21). This be- 
havior also seems to be a general property of the real LPVs and has been 
noticed for many objects (see e.g. Le Bertre 1992). In the synthetic light 
curves this wavelength dependence of the amplitude is largely due to the re- 
distribution of radiative energy from short wavelengths to long wavelengths 
caused by the dust grains: The energy absorbed in the accessible rather nar- 
row short wavelength portion of the stellar radiation field is redistributed by 
thermal dust emission over the broad infrared spectral range. 

The presence of discrete dust layers in the models also causes rippled 
or even step-like structures in the radial brightness profiles as well as in the 
theoretical visibilities, which result from these calculations (see Winters et al. 
1995). Similar structures have been observed e.g. for IRC +10216 by Ridgway 
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and Keady (1988). Therefore, the discrete structure of the dust shell may 
provide an explanation for both the occurrence of intermediate structures in 
the light curves as well as the pronounced structures in observed brightness 
distributions. A more detailed discussion of the observable consequences of 
the time-dependent model calculations can be found in Winters et al. (1994b, 
1995, 1996). 

5 Conclusions 

We have presented the ingredients required to describe consistently the cir- 
cumstellar dust shells of Red Giant stars evolving along the AGB in the 
HRD. An application of these considerations to the self consistent descrip- 
tion of stationary dust driven wind situations shows that radiation pressure 
on dust grains alone is capable of driving a massive, low velocity outflow 
with the characteristic properties observed for these objects. However, this 
stationary wind mechanism is restricted to those objects having very high 
luminosities. The theoretical spectra produced by the dust shell models are 
in good agreement with the observations of cool carbon-rich AGB objects. 

The assumption of stationarity results in the formation of rather large 
dust grains in the circumstellar shell. As the real dust forming objects are 
mostly pulsating variables, the formation of very large grains is prevented 
by the limitation of the time available for grain growth due to significant 
periodic changes of the hydrodynamic and thermodynamic conditions in the 
dust forming region. 

Therefore, we also have presented respective consistent time-dependent 
model calculations, which reveal a complex interplay among the processes of 
dust formation and growth, hydrodynamics and thermodynamics leading to 
a discrete shell-like distribution of dust across the circumstellar shell. The 
periodic formation of these dust layers decisively influences the short-scale 
behavior as well as the long-term course of the light curves. The dust compo- 
nent plays the key role in producing features, such as intermediate extrema 
and secondary periods, which similarly occur in observed light curves. The 
layered dust distribution also causes significant time--dependent structures in 
the surface brightness distributions and in the synthetic visibility functions, 
which also are in agreement with the respective observations. 

This behavior is only revealed by a consistent treatment of the complete 
coupled system consisting of chemistry, dust formation, hydrodynamics, ther- 
modynamics, and radiative transfer. 
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Cool  Stars Winds  and Mass  Loss: Observat ions  

Thibau t  Le Bertre 
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F-75014 Paris, France 
e-marl: LEBERTREQmesioa.obspm.fr 

A b s t r a c t .  Observational evidences for mass loss from cool stars are reviewed. The 
emphasis is put on Asymptotic Giant Branch stars which contribute to --~ 50 % of 
the replenishment of the Interstellar Medium. The aim is to illustrate the richness 
of the informations provided by the observations obtained in the various wavelength 
ranges from the optical to the radio. A selection of on-going developments which 
are potentially important for this theme is presented. 

1 I n t r o d u c t i o n  

Cool stars are sometimes surrounded by an expanding circumstellar shell of 
gas and dust. Most of these mass-losing objects are on the Asymptot ic  Giant  
Branch (AGB) of the Hl% diagram, but some are red supergiants. 

Mass loss is important  for stellar evolution. For instance, stars of initial 
mass larger than 1.4 M®, and up to 6-8 M o, will avoid becoming supernovae 
by losing up to 80 % of their initial mass. When nuclear burning stops, and 
after a spectacular Planetary Nebula phase, their remnants  will s imply cool 
down and evolve as white dwarfs of typically 0.6-0.8 M O. 

Furthermore,  through mass loss, AGB stars contribute to the replenish- 
ment  of the interstellar medium. Most of the carbon in the Universe is pro- 
duced in their interiors and a large fraction of the interstellar dust originates 
in their atmospheres. Mass loss from AGB stars is thus an impor tan t  factor 
of the galactic evolution. 

For many  fields of Astrophysics, it is a necessity to understand the pro- 
cesses of mass loss in these stars and the physics in their circumstellar en- 
velopes. The aim of this lecture is to provide an introduction to the observa- 
tional s tudy of winds from la te- type stars with emphasis on those from AGB 
stars. Interested readers will find more informations in reviews and conference 
proceedings. A recent review on "Circumstellar envelopes and AGB stars" 
can be found in Habing (1996); it is mainly dedicated to oxygen-rich stars. 
A review on carbon stars was presented by Jura  (1992). Conference proceed- 
ings are useful to get specific informations on the most  recent developments 
and on works in progress; see for instance Mennessier and Omont  (1990). An 
I.A.U. symposium on "The carbon star phenomenon" (n ° 177) was held this 
year (1996) in Antalya. Other valuable references can be found in Habing 
(1996, Sect. 1.9). 
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2 P r e s e n t a t i o n  of AGB Stars  

2.1 The  Evolu t ion  Towards the  AGB 

Thanks to elaborate codes, the evolution of a star can be numerically simu- 
lated in function of its initial mass (or mass on the Zero Age Main Sequence, 
ZAMS) and of its composition in helium and heavier elements. The physics is 
complex and sometimes has to be treated with phenomenological parameters 
(see the lecture by De Greve, this Volume). Depending on the values given to 
these parameters, the results may differ. However, the general lines of stel- 
lar evolution can be reproduced and are now basically understood (Iben and 
l~enzini 1983; see also the pedagogical review of Iben 1985). 

On the Main Sequence (MS), stars burn quietly hydrogen in their cores. 
When hydrogen begins to lack in the core, the star adapts its structure to 
allow for hydrogen burning around the core. It leaves the MS and, in an 
HI~ diagram, moves to the right and reaches the Red Giant Branch (RGB). 
For stars with a low mass (< 2 Mo) , the electron gas is degenerated in the 
hydrogen-exhausted core so that the energy transport is very effective. For 
these stars the mass of the core on the I=tGB will increase up to ,-~ 0.4 Mo and 
the luminosity, up to ~ 2000 L O . At this stage, helium is ignited suddenly at 
the center (He core flash) and the electron-degeneracy is subsequently lifted. 
The luminosity drops (L _< 50 Lo) and, thereafter, helium burns quiescently: 
the star sets on the Horizontal Branch (HB) of the HR diagram. 

More massive stars follow the same kind of evolution after the MS, except 
that, as their central temperature is higher, they do not develop an electron- 
degenerate helium-core. They generally reach a lower luminosity on the RGB. 
However, after helium ignition they set on the HB at a higher luminosity 
(L >_ 50 L o). 

At this stage (HB), all stars burn helium quietly through the triple--a re- 
action which produces 12C: 3 4He--> 12C (SBe is not stable), and eventually 
160 by the capture of another 4He nucleus. When helium is exhausted in the 
central parts, the star adapts again its structure so that now a shell where 
helium is burning surrounds a core containing carbon, oxygen and heavier 
elements. 

For stars with low and intermediate mass (M<6-8Mo) ,  the electron 
gas in this CO core is degenerated. The luminosity increases and the star 
arrives on the Asymptotic Giant Branch (AGB). The name Asymptotic Giant 
Branch comes from the fact that, in HI~ diagrams of globular clusters, the 2 
Giant Branches are merging asymptotically. 

Stars more massive than 6-8 M O do not develop an electron-degenerate 
CO core. Nuclear fusion proceeds in the core with the synthesis of silicon 
and heavier elements. They evolve to the right of the HR diagram at almost 
constant luminosity and pass through a red supergiant (RSG) stage (at least 
those with a ZAMS mass less than ~ 40 Mo). Their luminosities range from 
-,~ 2 104 L o to ,-~ 2 105 L o . When they are in the RSG stage, they may occupy 
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a region which overlaps with the region of the HR diagram occupied by AGB 
stars and can be mistaken. These stars differentiate from AGB stars only by 
their internal structure. 

Finally, objects of--, 60 M O or more evolve in Luminous Blue Variables 
(LBVs) and probably never reach the region of stars with cool surfaces. They 
are supposed to be progenitors of Wolf-Rayets (WRs). 

The following section will concern only low and intermediate mass stars 
(M < 6-8 M®). 

2.2 The  Life on the  AGB and Beyond  

The AGB is divided into 2 parts: the Early AGB (E-AGB) and the Ther- 
mally Pulsing AGB (TP-AGB). On the E-AGB, stars are burning helium 
quiescently around a CO-core which increases in size with the products of 
helium combustion (12C and 160). 

When helium is exhausted the star enters a new phase of the AGB (TP- 
AGB). The combustion of hydrogen starts again in a shell around the core. A 
new helium layer is formed. Then, He is re-ignited and its rate of combustion 
increases until the occurrence of a thermonuclear runaway (He shell flash 
or He thermal pulse). The hydrogen burning layer is pushed outwards and 
cools; hydrogen combustion stops. The helium burning layer expands and 
cools also. A new phase of quiet helium burning develops that will last until 
helium-exhaustion. Then a new cycle starts again. A few tens of such cycles 
are expected to occur during the TP-AGB phase. For ,.~ 10 % of the time, He- 
burning dominates and for the remaining 90 %, H-burning. Within a cycle, 
the typical timescales are 104 years for the He-burning phase and 105 years 
for the H-burning phase; the exact durations depend on many parameters 
(core mass, number of the cycle, abundances, etc.). A thermal pulse lasts 
for -.~ 100 years. During the thermal pulses, many neutrons are produced 
through reactions like 13C(~, n)160 or 22Ne(a, n)2SMg. These are used in the 
production of neutron-rich isotopes such as zirconium (Zr). These isotopes 
are called s-elements (for slow process elements, by opposition to r-elements, 
or rapid process elements, which are formed in Nova or Supernova explosions). 
The elements are building up through neutron capture by nuclei heavier than 
Fe. For the formation of s-elements, the flux of neutrons is such that the seed 
nuclei are stable with respect to ~-decay. 

Therefore, the structure of a star on the AGB is that of a core where 
hydrogen and helium are exhausted, surrounded by a layer where these 2 
elements are burning alternately. The size of the CO core is typically --~ 10 s cm 
and the temperature, 2-4 l0 s K. Above the nuclear burning shell, there is a 
convective envelope of several 101~ cm radius (Fig. 1). 

During the periods of hydrogen burning, the average luminosity of an 
AGB star is given by an empirical relation due to Paczynski: 
L ~  6 x 104 L e x (Mcore/M®- 0.5). 
On the AGB, the mass of the CO-core grows typically from ~ 0.6M o to 
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0.8 M o.  The expected average luminosity of a star on the T P - A G B  is 
thus in the range 5 103-2 104 L®. Whatsoever, the CO core does not grow 
beyond the Chandrasekhar limit (1.4Mo) , so that ,  in any cases, the average 
luminosity of an AGB star is always expected to be below ~ 5 I04 L O . 

An important  feature of the AGB is the phenomenon of dredge-up. After 
a He thermal-pulse, the base of the convective stellar envelope moves inward 
and reaches the zone where, during the pulse, carbon was synthesized. This 
element, together with other recently processed elements (e.g. the neut ron-  
rich isotopes), can be brought to the surface. In such case, the photosphere 
exhibits overabundances of these elements. In that  respect the C / O  abun- 
dance ratio is of great importance. For RGB stars and stars on the E-AGB,  
it is expected to be ~ 0.5. The photospheres of these stars have an effective 
temperature in the range 2000-3000K. Their  spectra are characterized by 
the presence of CO and oxygen-rich molecules such as TiO, VO or H20.  
They are said to be of M type. As long as the C / O  ratio is smaller than 1, 
the star is said to be oxygen-rich. But with the arrival of s-elements at the 
surface new metal oxides, such as ZrO or YO, are formed; the stars in which 
the corresponding bands are detected are classified as of S type. The spectra 
of S stars are also characterized by lines of Technetium (Tc), an unstable s-  
element with half-lifetime < 2 105 years. If the dredge-up is efficient enough, 
or after several thermal pulses, the C /O ratio may become larger than 1. 
The spectra of these carbon-rich stars (Ctype)  are dominated by CO and 
carbon-rich molecules such as C2, CN, HCN, C2H2, etc. Carbon stars show 
also the presence of s-elements in their spectra (Little et al. 1987). 

It is worth noting that RSG stars do not experience dredge-up of carbon. 
Except in the case of mass-transfer across a binary star, the enhancement of 
carbon and of s-elements at the surface of a star is an unambiguous evidence 
that  it is on (or has gone through) the T P - A G B .  

Another important  feature is the instability of the stellar atmosphere due 
to hydrogen opacity effects (~ mechanism, cf. De Greve, this Volume). AGB 
stars are generally variable and may pulsate as long-period variables (P > 100 
days). The pulsations are not always periodic. The Iightcurves are of various 
kinds. The classification which is commonly used is based on visual observa- 
tions obtained through the last ,~ 100 years (Kholopov et al. 1985). 
• The M i r a  variables have a relatively well-defined period, although their 
lightcurves are not reproducible from cycle to cycle. The periods are found 
in the range 100-1000 days and the amplitudes in the visual are larger than 
2.5 mag. The prototype and eponymous representative of this class is o Ceti 
(Mira Ceti). 
• The S e m i - R e g u l a r  variables (SR type) are periodic but sometimes with- 
out a well-defined period. The amplitudes of the lightcurves are smaller than 
2.5 mag. One makes the distinction between SRa and SRb. For the first sub-  
class, SRa, the period is well-defined, but the shape of the lightcurve shows 
strong variations. For the second one, SRb, the periodicity is very poorly 
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defined, with strong variations on the duration of each cycle. 
• The i r r e g u l a r  variables (Lb type) are those for which there is no evidence 
of periodicity. 
This classification is somewhat artificial, but has proven to be of some use. 
The distinction between Miras and SRa variables is probably unjustified, 
the SRa differing from the Miras only by the smaller amplitude of their 
lightcurves. Similarly, the separation between SI~b and Lb variables is some- 
what arbitrary and often dependent on the sampling of the observations. 

The stellar atmosphere instability seems to be the cause of a third impor- 
tant  feature (which is the topic of this lecture): mass loss. In the upper part 
of the atmosphere which is extended by its instability, refractory elements 
such as C or Si condense into dust particles. Once formed these particles are 
submitted to radiation pressure and are accelerated outwards, dragging the 
gas with them. It is by this mechanism (which is treated in detail by Sedl- 
mayr  and Winters, this Volume) that AGB stars surround themselves with 
an expanding circumstellar shell of dust and gas (Fig. 1). 

Mass loss rates of typically 10-s-10 -T M O yr -1 are commonly observed, 
but they may reach values of several 10 -5 M O yr -1. The mass loss phe- 
nomenon will culminate with the ejection of almost the complete atmosphere. 
The remaining atmosphere contracts and the star moves rapidly to the left 
of the Hl=t diagram at almost constant luminosity. The surface temperature 
grows to several 10 s K. For a short time (a few 104 years), the remnant  will 
ionize the surrounding expanding shell (which at this stage is called a Plan- 
etary Nebula, PN) and then, after dispersion of the PN, cools to become a 
white dwarf on a timescale of a few 109 years. 

An important  effect of mass loss for the stellar evolution of AGB stars is 
to limit the growth of the CO core. It will never reach the Chandrasekhar 
limit for a stable nuclear-fuel-exhausted core (1.4 Mo).  It is because of mass 
loss that  intermediate mass stars evolve into white dwarfs through the PN 
phase instead of terminating their life in a Supernova explosion. 

3 Evidence  for Mass Loss in the  Optical  Range  

3.1 Spectroscopy 

By observing the companion of a mass-losing star in a binary system, one 
may detect absorption lines which reveal the presence of the wind. In fact, 
the first detection of a large-scale circumstellar wind around a late-type star 
was done in this way by Deutsch (1956). He observed stationary absorption 
lines (Nal, Cal, CaII, Fel) in the spectrum of the spectroscopic binary c~ 2 Her 
(G5111 + A3V ?) due to the envelope of ~i Her (M51b-II) I. He evaluated the 
mass loss rate to ~ 3 i0 -s M O yr -I. As the distance on the sky of the 2 stars is 

1 Although, it has been classified spectroscopically as a supergiant, its luminosity 
places it on the AGB (Reimers 1977) 



ooo
.:. 

, 
% 

,s,
:: 

.
~
 

~
,

~
c

 
H
3
0
 -
->
 O
H
 +
 ~
I 

si
o 

/ 
/ 

16
12
 MI
Iz
 

OH
 m

a~
er

 

O
-r

ic
h

 

4 
co

 
j 

.~
 [

I 
.~

 
o 

/ 
¢o

~e
 

" 
: 

A
ltr

on
on

~d
 ~c

at
e 

~ 
"=

 
~ 

.:
:,

 
.~

.o
.-

~o
 

%
 

~~
~ 

C
-r

ic
h 

H/
He
 bu
mi
ag
 ]

~
,
o
/
.
 
J 

CN
, C
a,
 Ca
ll
, 

H
C
N
 ~

>
 
.~
 +
 

~
>
 
C 
+ 
N 

"~
S~
zt
~ 

sh
el

l 
C

H
, H

C
N

, e
tc

. 
C.

,~ 
CN

 
"~

..
~

 

:>
: 

/ 
ia

ne
r 

du
st

 
iO

 I 
10

,~
 

lO
t~

 
sh

el
l 

1Q
*6

 
10

 ~i
 

, 
I 

t 
I 

r(
~)

 
10

' 
31

~
 

lo
s 

10
0 

20
 

I 
J 

I 
I 

T(
K)

 

lO
 ~°

 
lO

tl 
1Q

l-
lO

 ' 
lO

Z
-l

O
' 

0.
1-

10
 

I 
I 

I 
I 

d(
cm

-~
) 

F
ig

. 
1.

 A
 s

ch
em

at
ic

 v
ie

w
 o

f 
a 

m
as

s-
lo

si
ng

 A
G

B
 s

ta
r.

 T
he

 n
um

be
rs

 a
re

 o
nl

y 
in

di
ca

ti
on

s 
on

 t
he

 
or

de
rs

 o
f 

m
ag

ni
tu

de
. 

IS
M

 s
ta

nd
s 

fo
r 

in
te

rs
te

ll
ar

 m
ed

iu
m

, 
IS

R
F

 f
or

 i
nt

er
st

el
la

r 
ra

di
at

io
n 

fi
el

d,
 a

nd
 

H
A

C
 f

or
 h

yd
ro

ge
na

te
d 

am
or

ph
ou

s 
ca

rb
on

. 
Fo

r 
co

m
pa

ri
so

n,
 t

he
 s

ol
ar

 r
ad

iu
s,

 R
o,

 i
s 

,-,
 7

 1
01

°c
m

, 
th

e 
as

tr
on

om
ic

al
 u

ni
t,

 ~
-, 

1.
5 

10
13

 c
m

, 
an

d 
th

e 
pa

rs
ec

, 
~ 

3 
10

 TM
 cm

 

Y. O
0 

g~
 

tO
 



Cool Stars Winds and Mass Loss: Observations 139 

5 arcsec, he could conclude that the wind extends to at least 1000 a.u. and 
lasted at least 500 years so that the quantity of matter in the al  Her shell is 
>_ 10 -~ M o . The agents responsible of such absorptions in companion spectra 
may be atoms, molecules or more complex carriers. For instance, Le Bertre 
and Lequeux (1993) could show that some carriers of the Diffuse Interstellar 
Bands are present in the winds of carbon stars. 

Furthermore, the wind of the mass-losing giant modifies its spectrum by 
scattering. Two cases have to be considered: scattering by dust and reso- 
nant scattering by atoms. In the first case, outflowing grains are scattering 
the stellar light redshifted by an amount corresponding to the dus t  expan- 
sion velocity, Vd. If the Circumstellar Dust Shell (CDS) is optically thin and 
spherically symmetric, the resulting scattered spectrum is simply redshifted 
by AA/A =Vd/c.  In such conditions, it should be possible to measure the 
dust expansion velocity. The application is not easy. In the data, the scat- 
tered spectrum is combined with the stellar spectrum. The CDS may not be 
spherically symmetric, etc. Furthermore, the stellar atmosphere is pulsating 
with radial velocity amplitude of same order of magnitude (a few kms-1). 
The observations are difficult to interpret (Dougados et al. 1992) and, up to 
now, the results have been disappointing (Vd smaller than Vgas !). 

For resonant scattering, the absorption is shifted to the blue by an amount 
corresponding to the gas expansion velocity, Vg. Again in the case of an op- 
tically thin medium and of a spherical Circumstellar Shell (CS), the photons 
are re-emitted on average at the stellar velocity. On the stellar spectrum, the 
absorption lines (e.g. NaI, KI) are skewed to the blue (Bernat and Lambert 
1975). On the other hand, if the envelope can be separated from the central 
star, one observes the lines in emission (Guilain and Mauron 1996 and ref. 
therein). In the case of an optically thin CS, the lines are centered at the 
stellar velocity. (However, note that in general the sodium lines at 5890 and 
5896 ]~ are of comparable intensity so that the optically thin hypothesis does 
not hold.) This kind of observation allows to derive the flux of the corre- 
sponding resonant element (assuming that it is not depleted on the grains). 
It gives also constraints on the photoionization rates, electronic densities, 
gas-to-dust ratios, etc. (Mauron and Caux 1992). Observations of the KI 
emission from CSs around carbon stars and their exploitation are discussed 
in details by Gustafsson et al. (1996). 

Spatially resolved spectroscopy in the optical range is a very sensitive 
technique to detect winds with low mass-loss rate around nearby late-type 
stars. For instance Mauron and Guilain (1995) have detected the resonant 
emission of NaI around ~ Peg, a nearby (,~ 60 pc) giant of type M2III which 
is very likely on the RGB and for which the mass loss rate is evaluated 
to be ,~ 10 -9 M O yr -1. It is worth noting that this result is one of the few 
direct observational evidences for mass loss during the first ascent of the giant 
branch. 
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3.2 I m a g e r y  

Direct imaging of CS is difficult and has emerged only recently. The extreme 
mass-losing carbon star CW Leo (Ii=tC -}-10216) is seen diffuse and elongated 
on the Schmidt plate obtained at Palomar. CCD images obtained at the CFH 
telescope by Crabtree et al. (1987) show an envelope of radius .-~ 40 arcsec. 
It appears to be clumpy with a structure composed of several discrete shells 
evoking a non-uniform mass loss. To the difference of the central peak which 
is due to dust-scattered stellar light, the external shells are due to scattered 
galactic light (ISRF). These shells are at the limit of detectability from the 
ground because their brightness is near or below the sky level. Similar struc- 
tures might also be detectable around other AGB stars. Their studies would 
give insights on the geometry of the mass loss phenomenon and on its time 
variability. 

Mapping in resonant-scattered emission-line should be extremely reward- 
ing because, with resonant-scattering, ones benefits of a contrast advantage 
as compared to dust scattering. An image in the NaI 5890/~ line of the enve- 
lope of p Cap (actually a red supergiant) shows evidence of asymmetry in the 
wind and of multiple shells (Mauron et al. 1986). Plez and Lambert (1994) 
have obtained maps of the KI (7699/~) emission around several AGB stars 
and found evidences of large asymmetries in their winds. 

Spectacular images have been obtained from space with the Hubble Space 
Telescope. Images of the post-AGB source, CRL 2688, reveal a multi-shell 
structure as for IRC +10216. Images of the Planetary Nebula, NGC 7293 (He- 
lix Nebula), show the existence of many small globules (~ 100 a.u.) of dense 
material (--~ 10 -5 Mo) which are illuminated by the central star (O'Dell and 
Handron 1996). These globules may originate in condensations of matter in- 
side the circumstellar envelope during the AGB phase. It has even been spec- 
ulated that they could be the remnants of concentrations in the AGB stellar 
atmosphere like those which are revealed by the SiO maser phenomenon (see 
Sect. 5.3). 

3.3 P o l a r i m e t r y  

Polarization is induced by scattering on dust. The radiation is linearly po- 
larized in the direction perpendicular to the plane of scattering. Polarimetry 
is a difficult technique because of the instrumental and observational effects. 
For instance, polarization of the light can be induced by the optics of the 
telescope itself if circular symmetry is broken like in Coud~ or Nasmyth foci. 
Also the sky background can be polarized by Moon light (and Sun light, out- 
side the strict "astronomical" night). Usually, one defines the position angle 
on the sky in which the radiation is polarized, and the degree of polarization, 
p, which is the percentage of polarized light (see the lecture by Bjorkman, 
this Volume). The wavelength dependence ofp  gives an indication on the size 
of the scattering grains. 
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At low spatial resolution, with a diaphragm, one measures the light inte- 
grated from the star and the whole shell. In the case of a spherically symmet- 
ric dust shell with randomly oriented grains, there should be no net effect. 
Unless grains in the CDS are elongated and oriented in a preferential direction 
(which, in AGB stars, seems unlikely), the positive detection of polarization 
indicates that the geometry of the shell is non-spherical. Polarization degrees 
of a few percent are generally found (e.g. Kruszewski and Coyne 1976). In 
some cases, polarization degrees of ~ 10 % have been detected, for instance in 
II:tC +10216 (Shawl and Zellner 1970). Apart from pointing to asymmetries, 
these results are difficult to interpret. 

More rewarding are the spatially resolved polarimetric observations. As 
the polarization degree and orientation change with position around the cen- 
tral star, observational and instrumental effects are more easy to control 
(McMillan and Tapia 1978). The results give indications on the real morphol- 
ogy of the dust shell. These observations are especially interesting when they 
can be complemented with emission-line maps. For instance, the polarization 
map around # Cep (Le Borgne and Mauron 1989) shows a large envelope (-.~ 1 
arcmin in diameter) with a structure composed of 2 dust shells which agrees 
with the structure seen in NaI emission (see previous section). 

4 The Infrared R a n g e  

Circumstellar Shells (CS) are made of gas and dust. The dust is absorbing the 
stellar radiation and re-emitting it at longer wavelengths in the infrared (IR) 
range. Dust grains have spectral signatures that will appear in this range. 
Although only a small fraction of the matter is in dust (~ 0 .5-  1%), the CS 
may be so dense that the central star is completely hidden and the source 
shows up only at infrared wavelengths. Many mass-losing AGB stars have 
only been revealed in the course of IR surveys and they can hardly be studied 
in the optical range. For these reasons, the IR range is extremely important 
for the study of all mass-losing AGB sources. 

4.1 G r o u n d - B a s e d  Observat ions 

Astronomical observations in the IR are hampered by two kinds of difficulties. 
First, the molecules in the Earth atmosphere (H20, CO2, etc.) are absorbing 
most of the light and the observations are possible only in a few spectral 
windows. Second, the telescope, the instrument and the atmosphere are radi- 
ating thermally at A > 2 #m. This emission produces a background which has 
to be subtracted from the data in order to extract the astronomical signal. 
Even if this subtraction could be done perfectly, the noise in the background 
limits the detectability of the sources. 

Photometric bands have been defined so that they fit into the atmospheric 
windows: J (1.25/zm), n (1.65 pro), K (2.2/zm) or K' (2.1 pm), L (3.6 #m) 
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or L' (3.8 #m), M (4.6 /~m), N (10/~m) and Q (20 #m). The exact values 
of the effective wavelengths and bandwidths have not been standardized for 
practical reasons and depend on the instruments so that any comparison 
must be done with a lot of care. 

Photometry of AGB sources through these bands has been done exten- 
sively allowing the determination of the energy distributions from 1 to 20 #m 
for many objects. All mass-losing source spectra exhibit an infrared contin- 
uum, in excess of the stellar spectrum, which is due to thermal emission by 
dust. Two kinds of spectra differentiate clearly. Those of carbon-rich sources 
are like blackbodies whereas those of oxygen-rich sources present spectral fea- 
tures at 10 and 20/~m either in emission or in absorption depending on the 
optical depth of the CS (Jones and Merrill 1976). Carbon-rich sources show 
a weak emission feature at 11/~m. As compared to the C-rich sources, the 
O-rich ones exhibit a larger excess of radiation at mid-infrared (10-20 #m) 
wavelengths relatively to the near-infrared (1-5 #m). 

The spectral features have been studied at low spectral resolution (A/AX 
50 to 100) since ~ 25 years (e.g. Merrill and Stein 1976). They are broad 
(AX ~ 1/~m) and smooth, without sub-structures. The 10 and 20-#m fea- 
tures seen in O-rich source spectra have been ascribed to silicate grains with 
an amorphous mineralogical structure (Day 1976). However, the continuum 
opacity, in particular at ~ < 8#m, is higher than expected and not well 
explained. As the match between the observations and the laboratory data 
is not entirely satisfactory, the concepts of "dirty" silicate or astronomical 
silicate have been introduced. The l l -#m feature in C-rich source spectra 
has been ascribed to silicon carbide (SIC, Treffers and Cohen 1974). Cohen 
(1984) distinguishes 2 types of SiC features that he relates to different grain 
mineralogical structures. In some extreme cases, the SiC feature can be seen 
in absorption (Justtanont et al. 1996). The continuum opacity is generally 
attributed to some kinds of hydrogenated amorphous carbon (HAC). In ad- 
dition, a feature centered at .-~ 30 #m has been observed in several C-rich 
sources and ascribed to magnesium sulfide (MgS, Goebel and Moseley 1985). 
These identifications are consistent with the C/O abundance ratio of the 
central star. For an M star (C/O < 1) all carbon should be locked into the 
CO molecule because it is very stable (the dissociation energy of CO is 11 
eV) 2. Carbon and/or carbonaceous molecules cannot contribute to the dust 
composition. For a C star (C/O > 1) the reverse applies; oxygen cannot enter 
into the composition of the dust. 

In conclusion, M and C stars differentiate clearly in the IR range by the 
emission of dust. The differences are seen in the gross shapes of the broad- 
band energy distributions and in the spectral features and denote different 
properties of the dust in their CS. The IRAS photometric data (Sect. 4.2) 

2 Here some caution should exercised as the presence of a hot companion or of a 
chromosphere may be a source of UV radiation photodissociating a part of the 
CO molecules. 
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complete profitably ground-based spectra up to 100/~m. From the resulting 
broad-band energy distributions and with the help of numerical models, it 
is possible to estimate the dust mass outflow. Values in the range 10 -9-  
10 .6 M® yr -1 are commonly found (e.g. Le Sidaner and Le Bertre 1996). For 
the 2 kinds of CDS, the optical depth is well correlated to the infrared colors. 
Therefore, the colors can be used as indicators of the dust mass loss rate. 

Some sources have been monitored in the infrared range. The amplitudes 
are generally decreasing with wavelength. The lightcurves show irregularities, 
but less pronounced than in the optical. Sometimes, intermediate extrema 
are seen on the lightcurve rising-branches. There is also a modulation of 
the mean infrared brightness on a timescale of a few stellar periods. The 
hydrodynamical models of dust formation developed by the Berlin's group 
(see the lecture by Sedlmayr and Winters, this Volume) provide a natural 
explanation to these lightcurve features. 

With the development of IR and radio techniques, new sources have been 
discovered. Among them, several long-period variables were found. They have 
properties which connect them to the Miras. The periods of the sources de- 
tected only in the IR are generally longer than those of optical Miras. Some 
extreme sources (OH/IR, see Sect. 5.2) have periods up to 2000 days. 

For each kind of source (C-rich and O-rich), one finds a loose correlation 
between the periods and the IR colors or the amplitudes of the lightcurves. 
This tends to show that mass loss depends on stellar variability. Also, the IR 
colors are well correlated with the amplitudes. However, this is only an effect 
of the shape of the spectrum; for Miras, the bolometric amplitude is always 

1 mag. 
Finally, for Miras, there is a correlation between the period and the lu- 

minosity. The relation may depend slightly on the type (M or C; Feast et al. 
1989) and on the metallicity, but the latter has been challenged (Whitelock 
et al. 1994). There are also correlations between the period and the magni- 
tudes, but because of the circumstellar extinction, they have to be handled 
with care for mass-losing Miras. However, the K magnitude seems reliable 
for this purpose since it should be affected only in the most extreme cases 
(Groenewegen and Whitelock 1996). 

4.2 IRAS 

The exploration from the ground of the IR sky is difficult, especially at 
)~ > 10 #m, because of the large thermal background and because of the 
poor atmospheric transmission. The Infrared Astronomical Satellite (IRAS) 
mission has been developed to conduct a survey of the sky in 4 IR bands 
with a cooled telescope (Neugebauer et al. 1984). The bands are centered 
at 12, 25, 60 and 100 #m and have a width, A)~/A ~ 0.5-1.0. The beams 
are ,,~ 2 arcmin wide, but the positional accuracy is generally much better 
(,~ 10arcsec). A catalogue of 2 l0 s sources (Point Sources Catalog, PSC) 
with positions and fluxes has been produced (IRAS Science Team 1988). In 



144 Thibaut Le Bertre 

addition, a low resolution spectrometer (LRS) provided good quality spectra, 
at a resolution ,-~ 50, for about 6000 sources (IRAS Science Team 1986, Volk 
and Cohen 1989, Volk et al. 1991). 

Several classification schemes of the LRS spectra have been developed, but  
the most commonly used is the original IRAS Science Team one. It is a two-  
digit system where spectra with a 10-#m feature in emission are registered 
as 2n, with a 10-tim feature in absorption as 3n and with an l l - # m  feature 
in emission as 4n (n being an index of the feature strength). More than half 
of the LRS spectra were obtained on AGB stars and most pertain to one of 
these classes: O-rich sources are normally found in classes 2n and 3n, and 
C-rich ones, in classes 4n. However, the LRS classes should be handled with 
care as some O-rich sources, with a self-absorbed 10-#m feature mimicking 
the 11-#m emission feature, appear in a 4n class. In these cases the 20-#m 
feature is clearly seen in emission and a visual inspection is generally sufficient 
to correct the classification. Furthermore, many AGB sources with extreme 
properties are found in other classes. For instance, Omont et al. (1993a) find 
sources with very cold C-rich shells in classes 2n (especially 21 and 22) and 
also in other less populated classes. In addition to the silicate feature at 
10 #m, there is evidence in the LRS spectra of some oxygen-rich sources for 
an emission feature at 12 #m which has been ascribed to A1203 (Onaka et al. 
1989). Finally, Litt le-Marenin and Little (1988) have found that  the spectra 
of S- type stars show usually an emission feature peaking around 10.8 #m. 

The IRAS photometric data  have been used to build IRAS color-color di- 
agrams. For stellar sources the most useful one is the [12 #m]-[25 #m] versus 
[25 ttm]-[60 #m] diagram which has been studied in details by van der Veen 
and Habing (1988, VH). They have divided this color diagram in 10 regions 
and have evaluated the composition of the population contributing to each 
region on the basis of the LRS spectra of identified sources. The region I, cor- 
responding to blackbody colors TBB >_ 2000 K, contains mainly stars without 
circumstellar emission. Regions II, III (a and b), and IV contain a majori ty 
of O-rich sources, and VII, C-rich sources, but without clear separation. For 
instance, Epchtein et al. (1990) found many carbon stars in regions II and 
III. Conversely, Guglielmo et al. (1993) found a majori ty of O-rich sources 
in region VII in contradiction with VH (they suspect selection biases in their 
own sample and in the VH one). Region V contains mainly Planetary Neb- 
ulae (PN) and pro to-PN whereas regions VI (a and b) contain sources with 
cold dust at large distances from the central star which can be indifferently 
C-rich or O-rich. The salient presence of cold dust radiating at 60 pm can be 
explained as due to an interruption in the mass loss rate for ~ 103-104 years 
(or at least a significant reduction). Chan and Kwok (1988) have shown that  
such a process can explain the positions of the sources in region VI. 

The IRAS colors diagram is therefore of some, but limited, use to dis- 
criminate O-rich sources from C-rich sources. As O-rich sources present a 
larger excess in the 10-20 #m range relatively to the 1-5 pm range than the 
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C-rich sources (Sect. 4.1), a better approach is to combine an IRAS color 
with a near- IR one. Epchtein et al. (1987) have shown that,  in a K -L '  versus 
[12#m]-[25#m],  the two populations are clearly separated. They describe a 
classification scheme of AGB sources based on these two colors. 

Although it is difficult to characterize the sources from the IRAS colors, 
for sources of known type the IRAS colors are indicators of the mass loss rate. 
On this basis, Jura  (1986) evaluates the mass loss rates of AGB sources and 
finds a correlation between the mass loss rates and the periods of the central 
stars suggesting again a dependency of mass loss on stellar variability. 

In spite of the large IRAS beams, some sources have been resolved at 60 
and 100 #m (Young et al. 1993). Indeed, for an AGB source of 2 104 Lo,  dust 
emission at 60 #m is expected up to a distance where dust is at < 50 K, i.e. 
~ 0 . 1 p c .  Therefore, if at a distance from the Sun <500pc ,  such an object 
should be resolved at 60 #m. However, this emission is difficult to recognize 
as it appears in the wings of the central core image. On the other hand, 
in the case of interrupted mass loss, the shell of cold dust can in principle 
be resolved more easily. Using an elaborate image reconstruction technique, 
Waters et al. (1994) have resolved at 60#m the shell of U Hya. The shell is 
clearly detached from the central star. Waters et al. show that the formation 
of such a shell required a mass toss rate of 0 .510-6Mo yr -1, a factor 25 
higher than the present-day rate. 

5 T h e  R a d i o  R a n g e  

Most of the outflowing material from AGB stars consists of atomic and molec- 
ular gas (dust accounts for < 1%). Therefore, important  information should 
be expected from the molecular emission in the radio range. Unfortunately, 
the most abundant molecule, H2, is hard to detect. After H2, CO is the dom- 
inant molecular species in circumstellar envelopes. Depending on the C /O 
abundance ratio, other molecules are expected: H20,  HCN, etc. Indeed lines 
of CO, HCN, OH and SiO have been detected in many sources (see for in- 
stance the catalogues of observations by Benson et at. 1990 for H~O, SiO 
and OH, and by Loup et al. 1993 for CO and HCN). With the improvements 
in receiver sensitivity, more and more molecules have been detected, such as 
the cyanopolyynes HC~n+IN with n up to 5, illustrating the richness of the 
circumstellar chemistry (see e.g. Olofsson 1994). 

An immediate contribution of these observations is the determination of 
stellar radial velocities and circumstellar expansion velocities with a great 
accuracy (,-, l kms-1) .  Gas expansion velocities are found in the range 5- 
35kms -1, with the majority in the range 10-20kms -1. The mass loss rates 
can also be estimated, mainly from CO data, and are found in the range 10 - s -  
10 -4 M o yr - I .  Furthermore, due to the numerous chemical reactions which 
are at work and to the presence of the Interstellar Radiation Field (ISRF) 
which is more or less attenuated by dust, the composition of the CS presents 
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a stratified structure. For instance, OH is formed by the photodissociation 
of H20 (H20-b h u - - >  OH ÷ H) and destroyed, also by photodissociation, 
but further away from the central star (Fig. 1). The studies of the molecular 
emission lines can serve to determine this structure and to probe the physical 
conditions in the different layers. Also, the history of mass loss can be studied. 
Finally, the radio lines offer the possibility of determining isotopic abundance 
ratios. 

The molecular emission may be thermal or non-thermal (maser). We first 
examine the CO emission which is a good example of thermal emission and 
then the OH maser emission at 1612 MHz. 

5.1 CO Emiss ion 

CO is the most abundant molecule after H2; the latter, being symmetric (as 
N2, C2H2, etc.), has no rotational transition. It is expected in both kinds of 
sources, O-rich and C-rich. The rotation lines J (1-0) at 115 Gnz (2.6mm) 
and J (2-1) at 230 GHz (1.3mm) have been detected in many nearby galactic 
objects (the catalogue of Loup et al. 1993 lists about 400 sources). Higher-J 
transitions have been observed in only a few sources, not so much because 
they would be less intense (in fact they may be more intense) but rather 
because of the atmospheric extinction in the sub-millimeter range. 

The line profiles depend on the CO-shell optical depth and on the relative 
angular sizes of the telescope beam and of the shell. The lines are not found 
to be variable which can be understood as CO is excited mainly by collisions 
with H2. In general, the 12CO lines are optically thick and the 13CO lines, 
optically thin. Mass loss rates can be derived from the CO profiles assuming 
a CO/H abundance ratio (Knapp and Morris 1985, Loup et al. 1993). A de- 
tailed modelling taking into account the beam profile is necessary to interpret 
consistently the different lines. In such case, the physical conditions through 
the shell and the mass loss history can be derived (Truong-Bach et al. 1991). 

The CO molecule is photodissociated by UV lines rather than by the 
continuum as most other molecules. Therefore, CO is self-shielded efficiently 
and is expected at much larger radii than the other species. Indeed, mapping 
has shown that CO may be found at distances up to ,~ 101Scm from the 
central star. In some cases, the CO emission has been shown to arise in an 
expanding detached shell (Olofsson et al. 1990). The sources which show such 
a pattern are also known to have an excess at 60 #m. This is another evidence 
for strong variation of mass loss on a scale of a few 103 years. For instance, 
a CO shell of-~51017cm radius and ,,, 1017cm thickness has been found 
around the carbon star S Scuti (Olofsson et al. 1992). The present mass loss 
rate would be ~, 3 10 -s M o yr -1 as compared to -,, 4 10 -5 M o yr -1 during the 
shell formation, 104 years ago. 
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5.2 OH Mase r  Emiss ion 
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In the non-excited states (fundamental state, v--0),  the rotational levels of 
OH are split into 4 components. The selection rules allow 4 transitions at 18 
cm between these components. For the ground level, they are referred to as 
the 1665 and 1667 MHz main lines (no change in the angular momentum, 
AF = 0), and as the 1612 and 1720 MHz satellite lines (AF = 1). The emission 
lines are so intense that explanations based on maser amplification have to 
be invoked. The line at 1720 MHz is observed only in early-type pre-main 
sequence stars whereas the 3 other lines are found in evolved stellar sources. 

The maser emission associated to late-type stars is said to be of type I 
if one of the main lines dominates, and of type II if it is the satellite line. 
The emission is generally variable with the same period as the central source. 
This is an indication of a radiative excitation. For the type II masers, Elitzur 
et al. (1976) have developed a model of excitation by IR photons at 35 #m 
which produce a strong inversion of the populations in the ground state levels 
connected by the 1612 MHz line. The maser emission arises in a shell of a 
few 1016 cm radius where the gas is at a temperature, Tga~ ~ 100-200K, and 
the density, nil2 ~, 105 cm -3 (Bujarrabal et al. 1980). The line has a two- 
peak profile with the peaks of emission emanating from the far and near 
sides of the expanding shell. This model has been widely confirmed by the 
observations. For instance, monitorings have shown that there is a delay of 

10-30days between the variations of the two peaks which translates to an 
OH-shell radius .-~ 1-5 1016 cm (Herman and Habing 1985). 

Radio surveys of the Galactic Plane at 1612 MHz have led to the discov- 
ery of many maser sources with unidentified counterparts. With subsequent 
searches, IR sources which radiate most of their energy in the mid-infrared 
have been found. They are variable with periods in the range 500-2000 days. 
Their properties connect them to the Miras or the red supergiants. These 
objects, without counterpart in the optical/NIR range, are called (type II) 
OH/IR sources. 

High resolution maps (< 1 arcsec) have been obtained with radio interfer- 
ometers, the Multi Element Radio Linked Interferometer Network (MERLIN) 
and the Very Large Array (VLA). The velocity resolved maps show spherical 
shells which sometimes break into individual components (Booth et al. 1981, 
Herman et al. 1985). The combination of these maps with the measurements 
of the phase lags between the two peaks of the line profile should, in principle, 
allow a direct determination of the source distances (van Langevelde et al. 
1990). 

The OH emission has also been probed with Very Long Baseline Inter- 
ferometry (VLBI) techniques which give access to scales ~ 0.01 arcsec. It is 
resolved in emission spots of size ,-~ 1015 cm with brightness temperature in 
the range 10s-109 K (Reid et al. 1977). 
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5.3 Othe r  Molecules  

In oxygen-rich sources, H20 is expected to be the second most abundant 
molecule with microwave transition (after CO, because O~. and N~ have no 
such transition), up to the point where it is photodissociated. Unfortunately 
(?), it is abundant in the Earth atmosphere which makes its detection diffi- 
cult. Nevertheless, maser lines have been discovered at 22 GHz (1.35 cm). This 
emission is present in O-rich sources. The intensities and the line profiles are 
strongly, and erratically, variable. High-resolution imaging (VLA/VLBI) has 
shown that the emission arises in spots of a few 1013 cm spread in a shell of 
,-~ 1015-1016 cm diameter. 

Similarly, in carbon-rich sources, HCN is the second most abundant 
molecule with microwave transition (C2H2 is symmetric like N2), up to the 
point where it is photodissociated. Thermal emission (J = 1-0, 88.6 GHz) has 
been detected in many carbon-rich sources and, surprisingly, also in some 
oxygen-rich sources (Lindqvist et al. 1988). Unfortunately, it is radiatively 
excited, which makes difficult the evaluation of its column density. A maser 
emission has also been found in one C-rich source (Guilloteau et al. 1987). 

Another important molecule, in O-rich sources, is SiO. It is expected to be 
abundant in the region below the dust condensation layer (<_ 1014 cm, Fig. 1) 
and depleted above (> 1015 cm). Thermal emission has been detected in the 
v = 0 level (J = 1-0, 43 GHz, up to J = 5-4). The lines are weak indicating 
depletion by a factor > 10. In fact, the emission is confined in a region of 
a few 1015 cm in which SiO is partly condensed (Lucas et al. 1992). Maser 
emission has been detected in the excited states (v= 1, 2, 3, with J up to 
5). Lines corresponding to transitions between higher rotational states are 
theoretically expected, but difficult to detect (Gray et al. 1995). The maser 
lines are narrower than the thermal lines suggesting that they form in a more 
interior region. Indeed, VLBI measurements show that the emission arises in 
spots of ,~ 1013 cm located in a ring of diameter of a few 1014 cm (Diamond et 
al. 1994, Greenhill et al. 1995). In conclusion, to the difference of the thermal 
emission, the maser emission is more related to the extended atmosphere of 
evolved stars than to their winds; therefore, they can be used to study the 
region at the base of the dust-flow (Doel et al. 1995). 

Many other lines have been found in CSs around evolved stars, for instance 
those of S-bearing molecules: SiS, H2S, SO2, SO, CS, OCS (Nguyen-Q-Rieu 
et al. 1984, Morris et al. 1987, Omont et al. 1993b). Also, organic molecules 
have been detected (mainly in the prototypical carbon star: IRC ÷10216), 
HC2n+IN and CnH (with n up to 6), and molecular rings, C3H2 and SIC2. 
l~ecently, CsH has been discovered by Cernicharo and Gu~lin (1996). 

For all the molecular lines, high-resolution imaging is important because 
the radial structures of the CSs can be studied for each of the corresponding 
chemical species. This gives important constraints on the physical and chemi- 
cal processes leading to the observed molecules (Bieging and Nguyen-Q-l=tieu 
1988). Also one may discover deviations from spherical symmetry and inves- 



Cool Stars Winds and Mass Loss: Observations 149 

tigate the circumstellar gas clumpiness (Gu41in et al. 1996). Finally, with a 
velocity resolution of ,-, 1 km s- 1, departures from the constant outflow veloc- 
ity can be revealed and quantified. In particular, imaging in the thermal SiO 
lines will be especially useful to study the condensation of SiO in dust and 
the acceleration of the gas in the dust-formation zone (Lucas et al. 1992). 

6 P r e s e n t  D e v e l o p m e n t s  

6.1 H i g h  S p a t i a l  R e s o l u t i o n  in t h e  O p t i c a l  a n d  I R  R a n g e  

Ground-based observations in the optical and infrared ranges are limited by 
the effects of the atmosphere on the image quality. At a wavelength A, a tele- 
scope of diameter D should give a resolution 0 -~ A/D which corresponds to 
the diffraction limit (e.g. if D = 1 m and A = 0.5 #m, 0 ,,, 0.1 arcsec). However, 
in a good astronomical site, the atmospheric turbulence limits the resolution 
to a value called the seeing, typically ¢ ~ 1 arcsec. This limit depends on 
wavelength as ¢ c( A -1/5, so that  in principle better images can be obtained 
in the IB, range. Several techniques have been developed to improve the spa- 
tial resolution up to the diffraction limit, for instance speckle interferometry 
and more recently adaptive optics. Also, there have been at tempts  to go be- 
yond the diffraction limit of a single telescope by building arrays of telescopes 
coherently phased (interferometers). 

Improving the spatial resolution in the optical range and up to ,-, 2 # m 
should give access to features at the surfaces of stars which may be correlated 
to structures in the circumstellar envelopes. As dust is scattering preferen- 
tially in the optical range, it would give access also to the structures in the 
inner dust shells. On the other hand, infrared wavelengths from 3/~m to 20/~m 
trace the grains thermal emission from the region of dust formation to the 
region where dust has cooled to ,-, 100 K and has reached its terminal velocity. 

The expected radius of a typical AGB star is ~, i a.u., of its inner dust 
shell -~ 10 a.u., and of the region where dust is at 100 K ,,~ 1000 a.u. (Fig. 1). 
For an object at a distance of 1 kpc, the diameter of the inner shell would be 
,~ 0.02 arcsec, and of the region with dust at 100 K -~ 2 arcsec. A hampering 
difficulty is the contrast between the emission from these regions and the 
emission from the central source. It is generally so large that  the shell is 
simply lost in the wings of the central source profile. 

Speckle interferometry has been applied in the near-infrared range (1- 
5#m)  to bright AGB sources such as IRC+10216 or OH/IR26.5+0.6 .  Sub-  
arcsecond diameters have been estimated. The data  are generally difficult to 
interpret because the observations give the Fourier transform of the spatial 
energy distribution of the source (visibility function) instead of a direct image. 
They require the use of an a-priori  model that  is fitted numerically to the 
data  (e.g. Lopez et al. 1993). Evidence of non-sphericity of the dust shells 
and of variability correlated with the light-curve have been found (Dyck et al. 
1991). The shells appear larger at the maxima of the lightcurves and smaller 
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at the minima. Recently, the technique of Adaptive Optics (AO) has been 
applied to AGB sources in the near-infrared range with success. In the mid- 
infrared (8-20 #m), presently the largest conventional telescopes (D ~ 4 m) 
are most of the time limited by diffraction. This will be no more the case 
with the 8-m class telescopes which are entering into activity and AO will be 
also a necessity to reach the diffraction limit. 

Although the principles of interferometry are well known and applied at 
radio-wavelengths since a long time, the applications in the optical and IR 
ranges are recent. Very promising results have been obtained with the Mount 
Wilson Infrared Spatial i Interferometer, ISI, a system of 2 movable 1.65- 
m telescopes operated at 11 #m. The carbon source I1:tC+10216 has been 
resolved and shown to vary in size as a function of its luminosity (Danchi 
et al. 1990). The same team has studied the distribution of dust around 12 
other AGB stars (Danchi et al. 1994). They find evidence for time-variations 
of the dust mass loss rates. 

6.2 Laboratory Studies 

The dream of any astrophysicist is to hold a sample of celestial matter for 
analysing it in the laboratory. The chemical abundances and the physical 
state of the matter could thus be determined directly instead of being inferred 
through hypothetical models. In this respect, it seems that investigators of 
AGB stars are favored. There are meteorites in the museum collections which 
probably contain samples of interstellar dust. Furthermore, good analogues 
of circumstellar grains are starting to be produced artificially. 

It has been shown that some inclusions in the meteorites are of pre-solar 
origin, i.e. they are samples of interstellar matter. The carbonaceous chon- 
drites appear to be the most primitive meteorites. Their formation tempera- 
ture is relatively low (< 500 K) so that they incorporate interstellar material 
that has not been processed in the solar-system parent-bodies (comets or 
asteroids ?). Some inclusions exhibit an abundance pattern, in carbon and s- 
elements, which is characteristic of TP-AGB stars. They must have formed in 
their winds. The analysis of these inclusions give informations on the compo- 
sition of grains around AGB stars and on the nucleosynthesis processes which 
have been at work in the heart of the parent stars. They give also insights 
on the physics of their formation. For instance, Bernatowicz et al. (1991) 
found inclusions which have a structure with concentric layers of carbon. In 
addition, one of these inclusions contains crystals of TiC and SiC which have 
been included in the grain during its formation. Assuming equilibrium con- 
densation, TiC should condense after carbon well below 1500K. Therefore, 
this discovery points to an inhibited nucleation and growth of carbon grains. 

The first attempt to produce in the laboratory a material matching the 
properties of interstellar dust was made by Day (1976, and ref. therein) who 
obtained amorphous silicate materials. These products had absorption prop- 
erties in the mid-infrared range which are in fair agreement with the obser- 
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rations (cf. Sect. 4.1). More recently, J~iger et al. (1994) and Dorschner et al. 
(I995) have undertaken a systematic programme to produce and study ana- 
logues of interstellar grains. They produced two series of glasses with pyroxene 
(MgxFel_xSiO3) and olivine (Mgx Fel-xSiO4) stoichiometry and studied their 
properties on the basis of laboratory measurements. With this approach they 
can evaluate the influence of various parameters on Ultra-Violet/Visual/IP~ 
absorption (up to 500pm). They compare their experimental results with 
the IRAS observations of O-rich CDS and conclude that amorphous silicates 
with olivine stoichiometry can give a good fit to the astronomical spectra. 

6.3 Space P ro jec t s  

The wavelength range from 20 to 800 pm is extremely useful for the studies 
of circumstellar shells. Apart from the emission by cool dust, many impor- 
tant atomic and molecular lines are found in this range. Unfortunately, it is 
not accessible from the ground and requires observatories in orbit around the 
Earth. Another limitation of ground-based telescopes is the thermal back- 
ground. Space-borne telescopes can be cooled (without risk of water conden- 
sation!). However, even when the telescope is cooled to less than 10 K (e.g. 
IRA.S), the observations at long wavelengths are limited by the thermal emis- 
sion from dust in the solar system (zodiacal light, TBB ~ 250K) or from dust 
in the interstellar medium (interstellar cirrus, TBB ~ 30 K). The background 
emission received by a detector is proportional to the pass-band and to the 
solid angle illuminating the detector. There are 2 ways to minimize it and 
hence to increase the sensitivity: to increase the spectral resolution, i.e. to 
go towards emission line studies, or to increase the spatial resolution which 
implies to increase the telescope diameter. 
ISO: The Infrared Space Observatory has been launched in November 1995 
and is presently operated successfully. The telescope has a 0.6-m diameter, 
like for the IRAS mission. ISO is providing photometry and spectroscopy up 
to 200 #m. It will be especially useful for the study of molecules which are 
abundant in the terrestrial atmosphere such as H20 and CO2 and which, for 
this reason, cannot be observed from the ground. Many lines of other impor- 
tant molecules such as OH and SiO fall in the range of ISO. Also there are 
fine structure lines of abundant elements which in CSs are expected to result 
from the dissociation of these molecules by the Interstellar Radiation Field 
(Fig. 1), e.g. OI (63 #m), CII (158 #m) or SiI (68 #m). ISO has also imaging 
capabilities that will allow to map the extended shells which have been sus- 
pected at 60 and 100 #m on the basis of the II~AS data (Young et al. 1993; 
Sect. 4.2). Finally, new dust features could be discovered in the wavelength 
range which has not been explored from the ground or with the IRAS LRS 3. 

3 The first ISO results (A&A, ISO Special Issue, Vol. 315 No. II) illustrate much 
better by themselves, and way beyond all expectations, the richness of the infor- 
mation contained in the 20-200 pm range (e.g. Barlow et al., Waters et al., in 
that Issue). 



t52 Thibaut Le Bertre 

F I R S T :  The Far Infra-Red and Submillimeter Space Telescope, to be launch- 
ed in 10 years from now (.-~ 2005), will provide imaging photometry and spec- 
troscopy in the domain 100-900 #m. It will thus cover the wavelength range 
longward of ISO and shortward of the ground-based radio-telescopes. The 
telescope is foreseen to have a 3-m diameter. High-resolution spectroscopy 
in the sub-millimeter range will give access to high-J rotational lines of 
molecules already observed in the millimeter range. This will be a natural 
follow-up for the studies described in Sect. 5. Also, a number of new chemi- 
cal species should be discovered. 

6.4 Near - In f ra red  Surveys 

The near-infrared range (1-2.5 #m) corresponds to the peak of emission of 
most AGB stars. Thirty years ago, the Two Micron Sky Survey (TMSS) 
was undertaken by Neugebauer and Leighton (1969). About 6000 sources, 
mostly 13.GB and AGB stars, were detected. Although limited in sensitivity 
(K ~ 3), the TMSS had a strong impact on the studies of AGB stars. Many 
mass-losing sources, extremely reddened by dust such as IRC +10216, were 
revealed for the first time. The TMSS contributed to the recognition that 
heavy mass loss is an important factor in the evolution of AGB stars. Since 
this pioneering work, there has been no attempt to survey the entire sky in 
the near-infrared. An extension of the TMSS to the southern Galactic Plane 
was done by Epchtein et al. (1987). 

The recent availability of sensitive near-infrared arrays such as the 256 
x 256 NICMOS detector has stimulated the development of 2 programmes 
aiming at surveying the near-infrared sky: 
(i) the Two Micron All Sky Survey (2MASS, Kleinmann et al. 1994), 
(ii) the DEep Near-Infrared Survey of the southern sky (DENIS, Epchtein 
et al. 1994, Le Bertre et ai. 1995). 

Although the exact specifications of these 2 programmes are somewhat 
different, they share many common features. In both cases, it is aimed to 
cover the sky with a spatial resolution ~ 1 arcsec down to a limiting mag- 
nitude K ..~ 14. With such a sensitivity, all AGB stars in the Galaxy should 
be detectable. Except in the densest parts of the Galactic Plane, all objects 
should be well separated. By contrast, due to its wide beam (-~ 1 arcmin at 
10 pm), IRAS was limited by confusion in large areas around the Galactic 
Plane. With a limiting magnitude K ~ 14, most AGB stars should be detected 
in the Magellanic Clouds. Even very reddened sources like IRC +10216 might 
be discovered in the LMC. 

As discussed previously (Sect. 4.2), IRAS has detected thousands of mass- 
losing AGB stars. Unfortunately, the IRAS photometric data alone are not 
sufficient to characterize these sources. However, the combination of these 
data with near-infrared ones coming from 2MASS and DENIS will allow such 
a characterization. For instance, in a J-K versus [12 pm]-[25 pm] diagram, 
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Fig. 2. J - K  versus [12 #m] - [25  #m] d iagram for a sample  of  stars with Cir- 
cumstel lar  Dust  Shell (CDS). The  da ta  are taken f rom Fouqud et al. (1992). 
(large El): sources with a confirmed Carbon- r i ch  CDS. (small []): sources 
with a suspected Carbon- r i ch  CDS. ( . ) :  sources with a confirmed or sus- 
pected Oxygen- r i ch  CDS. The  ( ,)  marks  the posit ion of  an M6 giant  wi thout  
CDS. For J - K  > 1.8, O-r ich  sources are clearly separated f rom C-r ich  ones. 
For J - K  < 1.8, the sources m a y  have a detached shell and the two types  are 
mixed 
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the O-rich mass-losing AGB stars separate weI1 from the C-rich ones (Le 
Bertre et al. 1994; Fig. 2). 

7 F i n a l  C o m m e n t s  

We have seen that there are many observational tools that are useful to study 
the winds around cool stars. In the next years, new facilities will enter into 
operation completing the existing ones. These new facilities together with the 
improvements in detector (including radio receivers) sensitivity and the de- 
velopments of new techniques will certainly bring new lights on circumstellar 
shells (CS). One should note especially the observations in the optical and 
IR range that will benefit considerably from the improved image quality and 
sensitivity. In the next years, direct imaging and spectroscopy of the CSs in 
the optical range will most probably bring a wealth of informations. An es- 
sential issue for the description of AGB stellar winds and a real observational 
challenge is the measurement of the dus t  expansion velocity. 

One must mention also as extremely promising the progress obtained with 
interferometry at millimeter and sub-mm wavelengths which now provides 
resolution of a fraction of an arcsec. In addition, space will give access to 
the wavelength range which is not accessible from the ground. Especially 
promising are the observations of molecules such as OH, H20, CO, CO2, but 
one should also stay open to unpredictable discoveries. The detections of new 
chemical species will be important for the understanding of the physical and 
chemical processes in CSs. 

Furthermore, laboratory studies of interstellar grains as well as of their 
analogues should have a strong impact on our knowledges about circumstellar 
dust and about the formation and evolution of grains. 

Finally, the increased capacities of computers will drive the applications 
of statistics to Astronomy. The exploitation of the huge amounts of data 
produced by large scale surveys such as 2MASS and DENIS will provide a 
new approach to the understanding of AGB stars and of their CSs in different 
environments. 
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A b s t r a c t .  We describe the theory of line driven winds. First we explain the con- 
cept and give some simple estimates. Next we derive expressions for the radiative 
acceleration due to lines. The equation of motion for a line driven wind from a 
star in the point source limit is solved. This gives simple analytical expressions for 
the predicted mass loss rates and the terminal velocities. The equations show that 
M ,,~ LI. '6 and voo ,,~ ves¢, in agreement with the observations. The theory is refined 
by a correction for the finite size of the star. We also discuss the stability of line 
driven wind and show that these winds are intrinsically unstable. This explains 
the observed super-ionization and the X-rays from line driven winds. We compare 
the predictions with observations and show that the theory is very successful in 
explaining the overall features of the winds of hot stars. 

1 I n t r o d u c t i o n  

Luminous hot stars have stellar winds with high terminal velocities of typ- 
ically about  2 to 3 times ves¢. The mass loss rates depend very strongly on 
the luminosity of the star. Observations show that  M scales approximately 
as L,  1"6. Both arguments suggest very strongly that  these winds are driven 
by line radiation pressure. This was first suggested by Lucy and Solomon 
(1967), immediately after the first rocket UV observations showed that  the 
very luminous hot stars in the Belt of Orion have stellar winds with typi- 
cal velocities of about  2000 k m s  -1,  and mass loss rates of a few times 10 -6 

M o y r  -1 . 
The radiation driven theory as we know it now was originally developed by 

Castor  et al. (1975), (called: CAK-theory)  and improved by Abbot t  (1982), 
Friend and Abbot t  (1986), Pauldrach et al. (1986) and Kudritzki et al. (1989). 
It  is based on the fact that  stellar photons can be very efficiently absorbed or 
scattered in the winds of hot stars, by very large numbers of absorption lines. 
The photons which are scattered in the wind transfer their outward directed 
mom en t um  to the gas. The Coulomb interactions of the absorbing (and thus 
accelerated) ions with electrons and protons then results in a sharing of the 
m o m e n t u m  with the whole plasma.  So the winds of hot stars are driven by 
mom en t um  transfer from the photons to the gas. The theory has also been 
applied to explain the mass loss f rom the cooler yellow supergiants (Achmad 
and Lamers, 1997). 
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In this paper I discuss the basics of the line driven wind theory. Section 2 
gives some basic estimates for the momentum transfer and the mass loss of 
radiation driven winds. Section 3 deals with the radiation pressure and the 
radiative force (the gradient of the radiation pressure) due to spectral lines. 
We will see that the radiative acceleration can be expressed in terms of a very 
simple function of density and velocity gradient, by means of the concept 
of a force multiplier. In Sect. 4 I describe a very simple way to solve the 
momentum equation of a line driven wind in case the star can be considered 
as a point source. This leads to expressions for the predicted mass loss rates 
and terminal velocities. In Sect. 5 the simple theory is improved by taking 
into account the finite size of the star. In Sect. 6 the stability of radiation 
driven winds is discussed and in Sect. 7 I discuss the observed values of the 
mass loss rate and terminal velocities for comparison with the theory. 

An extensive description of the theories and observations of stellar winds 
will be published in Introduction to Stellar Winds by H.J.G.L.M. Lamers and 
J.P. Cassinelli (Cambridge University Press), in preparation. 

2 B a s i c  C o n c e p t s  a n d  S o m e  E s t i m a t e s  

Hot stars emit the bulk of their radiation in the ultraviolet where the outer 
atmospheres of these stars have many absorption lines. The opacity in absorp- 
tion lines is much larger than the opacity in the continuum. The dominant 
UV continuum opacity in the atmospheres of hot stars is due to scattering 
on free electrons (Thomson scattering). The opacity of one strong line, say 
the C IV resonance line at 1550/~, can easily be a factor of 106 larger than 
the opacity for electron scattering. 

The large radiation force on ions because of their spectral lines would 
not be efficient in driving a stellar wind if it were not for the Doppler effect. 
In a static atmosphere with strong line-absorption, the radiation from the 
photosphere of the star will be absorbed or scattered in the lower layers of 
the atmosphere. The outer layers will not receive direct radiation from the 
photosphere at the wavelength of the line, and so the radiative acceleration 
in the outer layers of a static atmosphere due to the spectral lines is strongly 
diminished. However, if the outer atmosphere is moving outward, there is a 
velocity gradient in the atmosphere allowing the atoms in the atmosphere 
see the radiation from the photosphere as red shifted. This is because in the 
frame comoving with the gas the photosphere is receding. The Doppler shift 
thus allows the atoms to absorb undiminished continuum photons in their 
line transitions. This makes the radiative acceleration due to spectral lines 
in the atmospheres of hot luminous stars very efficient for driving a stellar 
wind. 

Suppose that the ions which provide the dominant radiative acceleration 
in the winds of hot stars constitute about 10 -s  of all ions by number and 
10 -4 by mass. This is a reasonable assumption because the majority of the 
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ions, H and He, contribute very little to the radiative acceleration because 
they are fully ionized (H +, He ++) or they have their strongest absorption 
lines in the far UV where the stellar flux is small (He+). So the driving is 
mainly done by the ions of C, N, O, Ne, Si, S and the metals, as we will see 
later. 

An absorption of an UV photon increases the momentum of the absorbing 
ion by hv/c,  which typically corresponds to a velocity increase by about  20 
cms  -1 for A = 1000 ~l.and the mass of the ion is mi = 20mH. If the ion would 
not interact with its surrounding plasma, its velocity would reach about  the 
speed of light after 1.5 109 absorptions which could occur in about 103 seconds 
for a typical hot luminous star. However, Coulomb interactions with other 
charged ions and electrons result in a redistribution of the momentum over 
all the gas. So the momentum gained by the absorbing ions has to be shared 
by the rest of the gas and hence the effective velocity increase per absorption 
is only 2 x 10 -3 cms -1. To accelerate the wind to voo = 2000 kms  -1 requires 
1011 absorptions per absorbing ion. The terminal velocity of a wind is reached 
within a few stellar radii, so the time it takes to accelerate the gas to voo 
is on the order of 3R./vo~ ,.~ 104 s if R.  = 10Ro. Therefore the ions that  
provide the radiative acceleration have to absorb about 107 photons s -1 . This 
implies that  only transitions to levels with short lifetimes ( r  ~ 10-7sec), i.e. 
transitions with oscillator strengths f ~ 0.01, will contribute effectively to 
the radiative acceleration. Lines with smaller oscillator strengths will only 
contribute to the radiative acceleration if their number is very large. We will 
see later in Sect. 3.3 that  this is indeed the case in the winds of hot stars. 

Photons transfer not only momentum to the wind but also energy. The 
radiation provides the kinetic energy of the wind, the potential energy to lift 
the gas out of the potential well of the star and the thermal energy of the 
wind. For typical O-stars, all these forms of energy are less than 10 -2 of the 
luminosity of the star. We conclude that  the luminosity of the star decreases 
very little by the radiative acceleration of the wind. 

2.1 H o w  M a n y  L ines  A r e  N e e d e d  to  D r i v e  a W i n d ?  

Consider a line driven wind with a terminal velocity of voo. We calculate how 
many lines are needed at least to drive the wind. See Fig. 1. 

Suppose that  the star emits a black body spectrum. The peak of LA is 
at "~max- Suppose there is one strong line of rest wavelength A0 ~ hmax near 
the maximum of the radiation curve. Tha t  line can absorb all the flux from 
the star ill the wavelength range between A0 and A0(1 -v o o / c ) .  So the total 
amount  of energy absorbed in the wind per second by the one line is 

El : LAm'xAmaxV°° (1) 
C 

and the radiative momentum, transferred from the radiation to the wind due 
to this one line dPrad/dt, is 
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THE FLUX ABSORBED IN THE WIND BY ONE STRONG LINE 
V~ 

~ f 

2 3 r/R. 5 6 

h_ 
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Fig.  1. Schematic picture of the luminosity absorbed by one strong absorp- 
tion line near the maximum of the energy distribution 

d Prad El L xm.x Amax Vc~ 
d t  = - 7  = c 2 (2) 

The momentum of the wind lost per second, dPwind/dt, is the product  of the 
mass loss rate per second and the terminal velocity 

dPwind - Mvco (3) 
dt 

If the wind is driven by radiation pressure, which means that  the momentum 
of the wind is due the momentum of the photons transferred to the gas, then 
Pwind "-- Prad, so 

/l~/(one strong line) 
Lmax Area× L. 

- -  (4) 
C 2 C 2 
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where we have used the property of the Planck function that  Lmax)~max ,~ L, .  
So we see that  one optically thick line near the m a x i m u m  of the radiation 
curve produces a mass loss rate of the order of L , / c  2. If  there are Neff strong 
lines near the peak of the stellar energy distribution, then we expect 

M Nof  (5) 

T a b l e  1. The wind of ( Pup (04  If) 

L,  = 8 l0 s L O 
T~f = 42000 K 
v ~  = 2200 k m s  -1 
~ /  = 5 10 -6 M o y r  -1 
L . / c  2 = 6 10 -8 M o y r  -1 

Nee = M c 2 / L ,  = 8 0  
dP~d/d t=L, . / c  = 1 1029 g c m - l s  -2 

dPwin.d/dt=Mvoo = 7 102s g c m - l s  -~ 
r] - M v ~ / ( L , / c )  = 0.70 

Table 1 shows the data  for a typical O-star, ~ Pup. We see that  the wind 
of ( Pup can be driven by about  80 strong lines. In reality the wind is driven 
by a mixture  of optically thick lines and a very large number of optically thin 
lines, as we will see below. 

We can also derive an upper limit for the mass loss rate of line driven 
winds. If all the photons from the star were absorbed or scattered once in 
the wind, the wind m om en t um  loss would be equal to the total m o m e n t u m  
of the radiation. The resulting m a x i m u m  mass loss is 

L---L = MmaxVoo ~ Jl~/max - - n .  (6) 
C 12'/)oo 

This m ax i m um  is called the "single scattering limit" because it is calculated 
under the assumption that  all the photons from the star are scattered once. 
(After the first scattering the photons have a more or less random distribution 
in direction, so the second and later scatterings are much less effective in 
driving the wind). 

The resulting r a t i o / ~ f / / ~ m a x  - -  7"] is the "momentum transfer efficiency 
factor" (sometimes called the "wind performance number") .  For most  O- 
stars the mass loss rate corresponds to 7; ~ 0.5 to 1.0, indicating tha t  the 
momen tum of the radiation is efficiently transferred to the wind. 

Wolf-Kayet stars have a much higher m o m e n t u m  transfer efficiency factor 
t0 < 7; < 102. So i f  the winds of Wolf-Rayet stars are driven by radiation 
pressure, there must be a much more efficient way to transfer m o m e n t u m  
to the wind. This might be reached by photon-diffusion in the wind if there 
are so many  absorption lines tha t  the wind opacity is large and the lines do 
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not leave gaps in the frequency space through which the photons can escape 
(Gayley et al. 1995). 

3 R a d i a t i o n  P r e s s u r e  D u e  t o  L i n e s  

3.1 T h e  R a d i a t i o n  P r e s s u r e  D u e  to  O n e  L i n e  

First we derive expressions for the radiation pressure provided by one line in 
a moving atmosphere. Figure 2 gives a schematic picture. 

RADIATION PRESSURE ON 1 CM 3 

v 

~ + A v  

rv--L /4.r2 I 3 
l cm a 

? 
r r+~r  

hr= 1 cm 

Fig .  2. Schematic figure of the radiation pressure due to one line in a moving 
atmosphere 

The absorption coefficient of a line per cm 3 gas is 

7re  2 
= (7)  

where the first factor ~re2/mec = 0.02654 cm 2 is the cross-section of the 
classical oscillator, f is the oscillator strength which depends on the line, ni 
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is the number  of a toms of ion i that  can absorb the line. The profile of the 
absorption coefficient ¢(~) is a Gaussian centered at the rest frequency L'0 of 
the transition, normalized to f ¢(L,)&, = 1. The profile function is a Doppler 
profile with a typical width of the thermal  velocity of the atoms, i.e. typically 
a few k m s  -1,  if there is no turbulence in the wind. If  the thermal  velocity is 
much smaller than the flow velocity in the wind, we can ignore the width of 
the profile function and approximate  it with a &function. This is called the 
Sobolev approximation.  

The radiation force due to a line is equal to the amount  of radiative 
m o m e n t u m  absorbed by 1 cm 3 per second: f = dprad/dt = c-l(dErad/dt),  
where Erad is the radiative energy absorbed per second per gram by the line. 
The  radiation force due to one line on a em 3 of the gas depends on the optical 
thickness of the gas for that  line. 

(1) Optically thin lines 
If  the gas is optically thin to the line, the amount  of energy absorbed by the 
line is simply proportional  to the stellar flux F~ at distance r and the number  
of absorbing ions per cm a. So radiative acceleration due to one line, which is 
the radiative force divided by p, is 

g* = T \mo  ~ 7 (8)  

where Lz, is the monochromatic  luminosity of the star. Notice that  the radia- 
tive acceleration is proportional to ni/p. If  the ionization and excitation in 
the wind does not change with distance, this ratio is constant and gl "~ L~/r  2. 

(2) Optically thick lines 
If  the gas is optically thick for the line transition, a cm 3 of gas will absorb all 
the flux within the frequency range of ul = ~,o(l+vl/c) and ~,~ = vo(1-Fv2/c) 
because the outward moving gas will see the stellar flux red-shifted. Here vl 
and v2 are the radial outflow velocities at the bo t tom and the top of the cm 3, 
and v2 - vl is the velocity difference over a distance of 1 cm 3, which is dr~dr. 
The frequency width is Av = vo(v2 -- v~)/c = vo(dv/dr)/c.  So the radiative 
acceleration is 

F~ vo l dv Lv l dv 
. . . . .  (9) 

c c p dr r 2 p dr 

We see that  the radiative acceleration by optically thick lines is proportional  
to p-1 dr~dr, whereas that  by optically thin lines is independent of p-1 dr~dr. 

3.2 R a d i a t i o n  P r e s s u r e  b y  a n  E n s e m b l e  o f  L ines  

The radiation pressure due to an ensemble of lines is the sum of gl of all 
the lines, optically thick as well as optically thin lines and those in between. 
Castor  et al. (1975) have shown that  the radiative acceleration, gL, due to a 
realistic ensemble of lines of different optical depths will be proportional  to 
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gL ~ (p- ldv/dr)a  ~ { (vr2 /M)dv /dr}  ~ ~ {(r2vdv/dr)/~I} ~ (10) 

with a between the vMue for the optically thin (a = 0) and optically thick 
lines (a = 1). Here we have used the mass continuity equation 

M = 47rr2p(r)v(r) . (11) 

Therefore they proposed the following expression for gL in terms of the ra- 
diative acceleration due to electron scattering times a multiplication factor 
M(t)  for the contribution by the lines 

#L = geM(t) . (12) 

The radiative acceleration due to electron scattering is 

g L ( e ) -  ~e L, GM, (13) 
c 4~rr 2 - -/'e r2 

with 

Fe - re L. 
47rcG M. 

The  force multiplier M(t)  can be written as 

(14) 

M(t)  - k t - %  ~ (15) 

where k, a and 5 are the so-called force multiplier parameters and t is the 
optical depth parameter 

dr ~ dr dr 

(CAK adopted a constant value of ~e=0.325 cm 2 g- l ) .  
The parameter  s describes the ratio between the characteristic particle 

density in the wind and some normalization value and is defined as 

10- r ip  
s - -  - -  ( 1 7 )  

mi-I  W 

The factor s * in (15) describes the dependence of the radiation pressure on 
the ionization of the wind. The degree of ionization is expected to depend 
on the ratio p /W,  where p is the density and W is the geometrical dilution 
factor for the mean intensity of the stellar radiation at distance r 

n. ~ (18) W(r) = 0 . 5  ~ j  - v ' l  - (n,/r)~, ~ 
2r ) 

Combining these equation we find an expression for gL 
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a~ L. kt_~s ~ (19) 
gL -- c 4rrr 2 

The force multiplier contains the sum of all the contributions of all the 
spectral lines, distributed over the spectral energy distribution, that can con- 
tr ibute to the radiation pressure. Therefore it depends on the energy distri- 
bution of the stellar spectrum as well as on the chemical composition and 
on the ionization and excitation stage. The force multipliers have been cal- 
culated for a grid of wind models by Abbott  (I982), by the Munich group 
(e.g. Pauldrach 1987) and by Shimada et al. (1994). Table 2 gives the list 
from Abbot t  (A), Pauldrach e t a l .  (P) and Shimada et al. (S). Notice that 
the value of a is about 0.52 for early-B and O stars. 

To, (K) 

Tab le  2. The force multiplier parameters 

k a 5 Ref k a 5 Ref 

6000 0.029 0.465 0.160 A 
8000 0.105 0.542 0.020 A 

10000 0.866 0.454 0.058 S 
15000 0.922 0.446 0.134 S 
20000 0.709 0.470 0.089 S 0.320 0.565 
30000 0.385 0.522 0.099 S 0.170 0.590 
40000 0.483 0.526 0.061 S 0.124 0.640 
50000 0.917 0.510 0.040 S 0.124 0.640 

A = Abbot t  (1982) modified to our definition of M(t)  
S = Shimada et al. (1994) 
P = Pauldrach et al. (1986) 

0.020 P 
0.090 P 
0.070 P 
0.070 P 

Computat ions of the radiative acceleration for other abundances suggests 
that  the force multiplier depends on the metallicity Z (i.e. the mass fraction 
of all species other than H and He) as gL "" Z 1'0, thus 

Mr, (tn) - Mn ( t , ) o  ( Z / Z o )  (20) 

with Z O = 0.020 (Abbott 1982; Shimada 1994). So the radiation pressure for 
stars in the Small Magellanic Cloud, which has a ten times lower metallicity 
than our Galaxy, is ten times smaller than for Galactic stars of the same 
mass, radius and temperature. 

3.3 T h e  Lines That  Drive  the  W i n d s  

Figure 3 shows the amount of stellar flux used by the lines in the wind for 
the radiative acceleration. First of all, notice that  a considerable fraction of 
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Fig.  3. The fraction of the stellar radiation that is scattered or absorbed 
in the winds of stars of different Tefr. For the hottest stars most of the 
lines that drive the wind are in the Lyman continuum. For stars with 
20 000 < Teer < 30 000 K most of the lines that drive the wind are 
in the Balmer continuum due to doubly ionized metals. For stars with 
Tefr < 10 000 K the singly ionized metals with thousands of lines in the 
Balmer continuum drive the winds (from Abbott  1982) 
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the flux is used for the radiative acceleration. This explains why the values 
of 77, which is the efficiency for transferring radiative momentum into wind 
momentum, is 0.7 for the star ~ Pup in Table 1. Secondly, notice that the 
wavelength bands where most of the radiative acceleration occurs gradually 
shifts to longer wavelengths as TeË decreases. There are two reasons for this 
effect: (i) as Tefr decreases the wavelength where most of the energy is emitted 
by the star moves to longer wavelength, (ii) as Tefr decreases the degree of 
ionization in the wind decreases and the wavelengths of the strong lines move 
to longer wavelengths. 

Figure 4 shows the contribution to the radiative acceleration by lines from 
different groups of ions. At the highest temperature, Teff = 50 000 K, the 
largest contribution comes from the lines of Ne to Ca, i.e. mainly Si, S, P. 
At temperatures in the range of 25 000 < Tefr _< 40 000 K the dominant 
contribution is by C, N and O, i.e. mainly N IV and O IV. However, more 
recent calculations with largely extended line lists indicate that the contribu- 
tion by Fe-group elements is larger than in Abbott's calculations (Pauldrach 
et al. 1989). Between 6000 K and 25 000 K the Fe-group elements provide 
the dominant contribution, mainly in the form of doubly ionized metals near 
20 000 K and as singly ionized metals at 10 000 K or cooler. Hydrogen and 
helium contribute very little to gL except for winds of stars with Tear < 6000 
K, where the Balmer lines of H become important. 

4 T h e  T h e o r y  o f  L i n e  D r i v e n  W i n d s  

In this section we will derive radiation driven wind models based on ex- 
pression (19) for gL and under the assumption that the photosphere can be 
treated as a point-source. This last assumption implies that the stellar radi- 
ation is assumed to emerge only in the radial direction. (In the next section 
we will describe the corrections due to the finite extent of the photosphere). 

The equation of motion for a steady state spherically symmetric wind is 

__vdv _ G M .  1 dp + gc -b gL (21) 
dr r 2 p dr 

where gc and gL are the radiative accelerations due to continuum and lines. 
For the line radiative acceleration we take the simplest possible expression 

gL -- g ~ k t - a s  ~ • (22) 

We also assume that the wind is isothermal so that the term with the pressure 
gradient in (21) can be expressed in a velocity gradient using p = pa 2 with 
a 2 = T I T / #  and the mass continuity equation, which gives ( 1 / p ) d p / d r  = 

(a~/p)dp /dr  = - ( a 2 / v ) d v / d r -  2a2/r.  This gives a momentum equation 

vdv G M .  2a 2 a ~ dv G M .  F. ~eL.  k t _ a s  ~ 

dr - r ~ + + + 4r¢c r 2 
V ~  - - ~  ° + ~ - - "  (23) 
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Fig.  4. The contribution to the radiative acceleration by lines of different 
ions as a function of temperature. For Teff> 25 000 K the lines of C, N, O 
and Ne-Ca dominate the radiative acceleration. For cooler stars the Fe-group 
elements produce the largest contribution to the line acceleration. H and He 
hardly contribute (from Abbott 1982) 

with 

with 

= CTp(dv/dr) -1 CT]~/I (r2vdv/dr) -1 - (24 )  

c~ = ,%/r.,/~k oe~ (25) 
v mH 

After multiplying (23) by r 2, and rearranging the terms, we obtain the 
momentum equation for a line driven wind 

with 

(1 av~) 2vdv GM. (I - f'~) + 2a2r + C(r2vdv/dr) ~ . (26) 

O = ~L.. k. (27) 
4~---7 4~ j l~---H-w-J 
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The factor p / W  is not really constant in the wind because p ,-~ r -2v  -1. 
However, since 3 is very small we can adopt it to be constant. 

This momentum equation has the character of a critical equation that 
we have encountered in the Chapter on the general theories of stellar winds 
(Lamers, first contribution to this Volume). In this case, the solution is more 
difficult because of its nonlinear character due to the (r2vdv/dr)  ~ term. How- 
ever, if we ignore the forces due to the gas pressure the solution becomes very 
simple, as was first shown by Kudritzki et al. (1989). (CAK have derived the 
full solution with the gas pressure taken into account and found almost the 
same expressions for the mass loss and the velocity law). We are looking for a 
solution with a monotonically increasing velocity law, so the right-hand side 
of this equation should be 0 at the sonic point where v = a and the left-hand 
side vanishes. 

If we ignore the gradient of the gas pressure in (21) the two terms con- 
taining a ~ disappear from (26) and the momentum equation reads 

- ~ r  - C \  ~ r , ]  = - G M * ( 1 - F e ) = c ° n s t a n t  . (28) 

This condition can only be fulfilled at every distance r if 

2 vdv 
r ~ _= D = constant , (29) 

thus (28) reduces to 

C D  ¢' = D + G M . ( 1 -  P~) . (30) 

The left-hand side and the right-hand side of this equation are plotted in 
Figure 5. The figure shows that there are either no, or one or two solutions, 
depending on the value of C. Since the value of C depends on the mass 
loss rate, (27), and we want the mass loss rate uniquely determined by the 
momentum equation we can only accept the value of C for which there is only 
one solution of (30). This is the case if the straight line of the right-hand side 
of (30) grazes the curved line of the left-hand side. In that case the mass loss 
rate and the velocity law are uniquely defined and they are self-consistent. 
If we bring the left-hand side of (30) to the right-hand side, the resulting 
equation 

C D  ~ - D -  GM,(I -  F~) = 0 (31) 

has a single solution at its minimum (see Fig. 5). This minimum is found by 
differentiating the equation and by finding its zero point. This gives 

Dl-Ot 
C = (32) 
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Fig .  5. The simple solution of the momentum equation for line driven 
winds derived by ignoring the gas pressure. The figure shows the functions 
D + GM,(1 - / ' ~ )  (thin straight line), and the functions C D  ~ for different 
values of C (dashed and thick curved lines). Depending on the value of C the 
momentum equation has 2, 1 or 0 solutions. The unique solution (thick line) 
gives a consistent model for a line driven wind (after Kudritzki et at. 1989) 

Substituting this into (30) gives an expression for the velocity law 

r2Vdv__~_r = D _ 1 ~  a a  GM,(1 - Fe) • (33) 

Realizing that the left-hand side of this equation is -0.5 d(v2)/d(1/r)  we 
can easily integrate this expression from the photosphere, where v(R,) is 
negligible, outward. We find 

v(r) = 1 - a  2 G M , ( 1 -  r'~) ~ ,  =vo~ 1 -  . (34) 

Notice that this is a ;)-type velocity law, v(r) ..~ (1 - R , / r )  z, with/9 = 1/2. 
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The terminal velocity is 

i 4 2GM.(1-F~) i 4 = = . ( 3 5 )  
t - a  R.  1 - a  

So we see that  the terminal velocity of a radiation driven wind scales with 
the escape velocity at the photosphere and with X/a/(1 - a) .  Notice tha t  vc¢ 
depends only on 4 and not on k. For a ~ 0.52 we predict v~  ~ 1.04v~¢. 
This ratio is smaller than observed, but we will see in the next section that  
the finite disk correction improves the predictions considerably. 

The mass loss rate for this simple model follows from the substi tut ion of 
C (32) into (27). This gives 

l - - a *  1 

--~ (k4)Z sZ {GM.(1 - F. ) }  --z- 

( 3 6 )  

Notice that  the predicted mass loss rate is proportional to .it;/,,, L1./~ M (~- 1)/~ 
,,, L1.gM2 "°'96. Since L. ,~ M 2"5 for massive stars, we expect /t;/ ,-, L .  t s  if 
a = 0.52. This agrees reasonably well with the observations. 

In this simple derivation we completely ignored the gas pressure. The  full 
solution, derived by CAK with the gas pressure taken into account, results 
in exactly the same expressions for M and v~.  

5 T h e  C o r r e c t i o n  f o r  t h e  F i n i t e  S i z e  o f  t h e  S t a r  

In the previous section we have described the models of line driven winds 
with the assumption that  the radiation from the wind is only in the radial 
direction, i.e. the star  is considered to be a point source. This is a good 
approximation far from the star, but it is inaccurate close to the star  where 
the radiation has a significant amount  of non-radial momentum.  Therefore 
the line radiation force in the point source model is overestimated close to 
the star. We will show below that  this results in an overestimate of the mass 
loss rate and an underest imate of the terminal velocity. We will describe a 
correction factor for the radiation pressure that  takes into account the finite 
size of the star. This is called the finite disk correction factor. 

Pauldrach et al. (1986) have shown that  if the finite disk is taken into 
account, gL becomes 

~% L. .k.t_%~ Df (37) 
g L -  c 47rr 2 

which differs from (19) by the finite disk correction factor, DI, 

(1 + (r) "+1 - (1 + ~#.:),+1 (38) 
= (1 - + 1) (1 + 
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with 

and 

r dv 
- 1 (39) 

v dr 

~.  = ~ / 1  - R ,  I r  . (40) 
Figure 6 shows the finite disk correction factor D/as  a function of distance 

from the star for/?- type velocity laws 

v ( ~ )  = v ~  1 - - -  ( 4 1 )  

with/? = 0.5, 0.7, 1.0, 2.0, and 10 and a force multiplier a = 0.60. The value 
of D!  increases from D / =  1/(1 + a) at r = R. ,  to a value larger than unity 
and converges to 1 at r - oo. The small value of D! near r .~ R.  is due to 
the fact that  the radiation close to the star reaches r from a wide angle so 
the radiative acceleration is smaller than in the case of a radial photon flux. 
The increase to D!  > 1 is due to the fact that the Sobolev optical depth 
of the lines in the transverse direction is smaller than in the radial direction 
at large distances. A decrease in the optical depth results in an increase in 
the radiative acceleration. At r = oo the radiation comes out radially, so the 
point source approximation is valid there and D! - 1. 

5.1 T h e  Ef fec t  o f  t h e  F i n i t e  D i sk  on  t h e  Mass  Loss  R a t e  
a n d  V e l o c i t y  

If the finite disk is taken into account, the momentum equation (26) for line 
driven winds becomes 

o 

(42) 
The momentum equation (42) for a finite disk is more complicated, due 

to the factor D/, than (26) for a point source. There is no analytic solution to 
it, which implies that  the momentum equation has to be solved numerically. 
Kudritzki et al. (1989) have described a simple program for calculating the 
mass loss rate and terminal velocity of any star as a function of the force 
multiplier parameters. 

The results of the finite disk models differ from the models in the point 
source limit in three ways: 

(i): The mass loss rate is smaller by about a factor of 0.5. This is because 
the radiative acceleration close to the star is reduced. We have seen in 
the Chapter about the general theories of stellar winds (in this Volume) 
that  a reduction of the acceleration in the subcritical region always leads 
to a decrease in /~/, because the density scale height in the subcritical 
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Fig.  6. The finite disk correction factor, D],  in the case of a force multiplier 
a = 0.6 and a #-type velocity law with several values of # 

(ii): 

region becomes smaller which results in a lower density at the critical 
point. Figure 7 shows the mass loss rates of a number of early-type stars 
calculated with and without the finite disk correction. 

The terminal velocity of the wind is larger by about a factor of 2. This 
arises from two effects. 
a) Since the mass loss rate is smaller, the density in the wind is smaller 
and the Sobolev optical depth of the lines is smaller. A larger radiative 
acceleration then occurs because #L "" t - a ,  and this results in a higher 
terminal velocity. This effect explains an increase in voo by about a factor 
1.5. 
b) The correction factor D/ is larger than unity beyond the critical point. 
This produces an additional increase in voo. Figure 8 shows the values of 
voo for a number of early-type stars calculated with and without the finite 
disk correction factor. 
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Fig .  7. The effect of the finite disk correction on the mass loss rates of line 
driven wind models• Filled and open symbols refer to models with and with- 
out the finite disk correction respectively for stars of Teff = 20000 K and 
40000 K. The mass loss rates are calculated with force multipliers k = 0.40, 
a = 0.52 and 5 = 0.10. The models with the finite disk correction have mass 
loss rates lower than for point source models by 0.2 dex at 106 L o to 0.8 dex 
at  10 a L®. The mass loss rate scales as L. 1"66 

(iii): The  velocity law is slightly "softer" as it rises more gradually. I t  is ap- 
proximately a #-law with # ~ 0.8 rather than # = 0.5 in the point source 
limit. Figure 9 shows the calculated velocity law in a wind of an O4-star. 
Notice the drastic difference of the velocity laws calculated in the Sobolev 
approximat ion with or without the finite disk correction factor. The ve- 
locity law, calculated with the finite disk correction factor, can be very 
well represented by a #-law of 

v(r) voo{1 0"9983R* } °s3 = (43) 
r 

The figure also shows the results of a stellar wind calculation in which 
the Sobolev approximation is not applied, but  the radiative acceleration 
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Fig. 8. The effect of the finite disk correction on the terminal velocities of 
line driven winds. The calculations are for the same models as in the previ- 
ous figure. The models with the finite disk correction (filled symbols) have 
almost twice as large terminal velocities as the point source models. The 
predicted terminal velocities scale with the photospheric escape velocity as 
voo ~ 1.92v~,c if a = 0.52 

is calculated exactly with the "comoving frame method". Notice the very 
good agreement between the results of the comoving frame method and 
the Sobolev method with the finite disk correction. 

6 T h e  I n s t a b i l i t y  o f  L i n e  D r i v e n  W i n d s  

Up to now we have assumed that the line driven winds are homogeneous 
and stationary. The results of line driven wind models in terms of mass loss 
rates, terminal velocities and velocity laws agree very well with the obser- 
vations. This implies that the stationary models are adequate for describing 
the global structure of the line driven winds. However, they fail to explain 
some of the important details of the observations of the winds of hot stars• 
In particular: the X-rays from the winds of hot stars; superionization of the 
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Fig. 9. Upper figure: Comparison between the velocity law of a line driven 
wind calculated in the point source limit (PS, dotted line) and with the finite 
disk correction (FD, full line). Notice the large difference. The velocity can 
very well be fitted to a simple ~-law (dashed line) Lower figure: Comparison 
between the model calculated with the Sobolev approximation (FD, dashed 
line) and with the more accurate Comoving Frame Method (CMF, full line). 
This difference is small (from Kudritzki et al. 1989) 

winds to ions such as O VI which clearly require an extra source of high 
energy photons; and the presence and variability of the discrete absorption 
components in the P Cygni profiles formed in the winds of hot stars. These 
observations suggest that the radiation-driven winds of O-stars are unstable. 
We will show by a simple argument why the line driven winds are unstable 
to small perturbations, e.g. due to small amplitude stellar pulsations. 

Suppose a hot star has a stationary line driven wind with a smooth distri- 
bution of velocity, density and temperature. Assume that at a certain moment 
the velocity distribution is slightly perturbed and that this perturbation has 
the shape of a sine-wave, between rl and r4, as shown in Fig. 10. 

Due to this sine-wave the velocity gradient in the layers where the per- 
turbation occurs changes. Define r2 and r3 as the points where the perturbed 
velocity has the same gradient as the unperturbed velocity law. In the layers 
rl < r < r2 and r3 < r < r4 the velocity gradient is larger than in the 
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Fig.  10. The effect of a sinusoidat velocity perturbat ion in a line driven wind. 
The radiative acceleration is proportional  to (dr~dr) ~ with c~ ~ 0.6. The 
velocity gradient between rl  and r2 and between r3 and r4 is larger than 
in the unperturbed wind so these layers will be accelerated faster. The  layer 
between r2  and r3 has a smaller velocity gradient than in the unper turbed 
wind, so this layer will be accelerated slower. The difference in acceleration 
between the layer rl  < r < r2 and the layer r2  <~ r < r 3 will produce a shock 

unper turbed wind, and in the layer r2 < r < r 3 it is smaller. 
The radiative acceleration depends on the velocity gradient and on the 

density as 

Therefore the layers with a higher velocity gradient, r l  < r < r2 and r3 <~ 

r < r4, will be accelerated faster than the unperturbed wind at that  distance 
and in the layer r2 < r < ra the acceleration will be smaller. (This effect is 
modified if the change in density is also taken into account). A layer which 
has a higher value of p - l d v / d r  than normal  will be accelerated with respect 
to the layers where this value is lower than normal, and the reverse is true 
for a layer with a lower velocity gradient. In addition there is an effect of a 
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decreased "shadowing" of the stellar flux by the lower layers of the wind if 
the gas has a higher velocity than its surroundings. (This effect depends on 
the velocity increase, rather than on the velocity gradient). It also results in 
an increase of the radiation pressure on velocity perturbations. 

This implies that velocity perturbations will grow in the wind. This will 
give rise to shocks in the winds because the gas in the layers with higher 
velocity gradient or lower density will catch up with the slowly moving layer 
above until they run into each other and shock. 

The effects of instabilities in radiation-driven winds have been studied by 
various groups and have been reviewed by Owocki (1994). Figure 11 shows 
the results of the time dependent calculations. 
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Fig. 11. A snapshot picture of time dependent calculations of a radiation 
driven stellar wind. Notice the variations in v and p due to the occurrence of 
shocks. The "mean wind" has about the same mass loss rate and the same 
velocity structure as the shocked wind (from Owocki 1994) 

These effects are 

(i): The mean, i.e. time-averaged, mass loss rate of unstable line driven winds 
is the same as found in the stationary solutions. The time-averaged ter- 
minal velocity of the wind and the time-averaged velocity law are also 
very similar to the stationary case. 
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(ii): Velocity and density perturbations can grow on a timescale which is short 
compared to the characteristic flow time 31=t./v~, of the wind. Thus a 
considerable fraction of the wind, i.e. more than about 10 per cent of its 
mass, will have gone through shocks. The velocity perturbations in the 
shocks can easily be about 30 percent of the normal values in a stationary 
wind. This results in a broadening of the absorption and emission parts 
of the P Cygni profiles formed in the winds. 
The shocks can reach temperatures of about l0 T K. This explains the 
observed X-ray flux from the winds of hot stars. The high temperature 
regions correspond to high density regions. 

(iv): The X-rays created in the shocks can superionize part of the wind to 
high stages of ionization. In particular, ions such as O VI and N V can 
be created by Auger ionization in which the absorption of a soft X-ray 
photon results in the ejection of two electrons, e.g. O IV + hu --+ O VI 
+ 2e-. 

7 C o m p a r i s o n  B e t w e e n  O b s e r v a t i o n s  a n d  P r e d i c t i o n s  

f o r  O a n d  B S t a r s  

7.1 Compar i son  Between Observed and  P red ic t ed  voo 

Lamers et al. (1995) have studied the terminal velocities of winds of O, B 
and A stars derived from the profiles of UV resonance lines. Their result is 
shown in Figs. 12 and 13. Figure 12 shows that voo roughly scales with the 
effective escape velocity, (i.e. corrected for the radiation pressure by electron 
scattering) as predicted by the line driven wind theory with voo ~ 1.0 to 3.0 
vesc. However, there is a significant scatter in this diagram. This turns out to 
be due to the fact that the ratio voo/ves¢ is temperature dependent. This is 
shown in Fig. 13. 

The line driven wind theory predicts that 

(45) ?)oo -~ X FD Vesc 

where XFD depends on the finite disk correction and ~ is temperature de- 
pendent. 

The jump near 21000 K is due to the "bi-stability jump" of line-driven 
winds: the winds of stars with Tefr > 21 000 K are driven by lines in the 
Lyman continuum, whereas the winds of the cooler stars are driven by lines 
in the Balmer continuum. The many lines in the Balmer continuum are less 
optically thick than those in the Lyman continuum, which implies a decrease 
in the force multiplier a and hence in v~o/ves¢ for the cooler stars (Pauldrach 
and Puls I990; Lamers et al. 1995). The data also suggest a second bi-stability 
jump near T~fr=10000 K. 



182 Hermy J.G.L.M. Lamers 

4000 

3000 

2000 

1000 

THE OBSERVED RELATION BETWEEN V.  AND V,~ c 
. . . .  I . . . .  I ' ' < ' ~ 

+  ,,<Ioooo K • .j.. 
"J'' 1 

2 " "  
g 

o 

500 7000 ~ 500 
v ,~  ( k i n / s )  

Fig.  12. The terminal velocities, v~o of O, B, A supergiants derived from UV 
lines are plotted versus the effective escape velocities, vest. The figure clearly 
shows four branches: Stars with Tefr > 21000 K (black dots) have a mean 
ratio of 2.7. Stars with 10000 < Tefr < 20000 K (open circles) have a mean 
ratio of 1.3. Stars with 20000 < Tefr < 21000 (crosses) have ratios in between 
2.7 and 1.3. Stars with Tefr < 10000 K have a mean ratio of 0.7 (after Lamers 
et al. 1995) 

7.2 C o m p a r i s o n  B e t w e e n  O b s e r v e d  a n d  P r e d i c t e d / V /  

The line driven wind theory assumes that  the momentum of the wind/l~rvoo 
is due to the transfer of radiative momentum L./c from the photons to the 
gas. Therefore the best way to confront the theory with the observations is 
the comparison between the observed an predicted momentum of the wind. 
This was done for a number of hot stars with well known mass loss rates 
by Lamers and Leitherer (1993) and by Puls et al. (1996). The result is 
shown in Fig. 14. The upper part of this figure shows the observed wind 
momentum as a function of L./c and the lower part shows the predicted 
wind momentum. This figure shows that the observed momentum of the O- 
stars is approximately in agreement with the predictions (but slightly too 
high). However, the observed momentum of the Wolf-Rayet stars of types 
WNL is considerably higher than predicted. 
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Fig.  13. The ratio voo/ve~¢ as a function of Tefr. The same data  as in the 
previous figure. This figure clearly shows that the ratio Voo/Vesc depends on 
Tefr. There are three regions: Teff < 10000 K, 10000 < Teff < 20000 K, 
Tefr > 21000 K. Stars with 20000 < T~fr < 21000 K show a very large range, 
which is much larger than the observational uncertainty (from Lamers et al. 
1995) 

8 Conclusion 

The radiation driven wind theory is very successful in explaining the gross 
properties of the winds of O, B and A stars. The theory is simple and the 
predicted mass loss rates and terminal velocities depend on the three force 
multiplier parameters k, a and 6. The difficulties of calculating the radiation 
pressure due to millions of spectral lines is hidden in these three parameters. 
The calculations of these three parameters is an enormous task, that has been 
undertaken by only a few groups. 

Although the simple theory can explain the gross properties of the winds, 
there are several observational indications that real stellar winds are much 
more complicated: they emit X-rays, they are super-ionized, and they show 
fast variations in the line profiles. All these effects can in principle be ex- 
plained by shocks in instable winds. There are however also effects that  are 
not understood: the most prominent one is the large mass loss rate of Wolf- 
Rayet stars. Another significant unexplained feature is the observed variation 
of line profiles over periods of days, which seem to be due to some rotation 
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Fig.  14. The observed (upper figure) and predicted (lower figure) wind mo- 
mentum of O-stars and Wolf-Rayet stars of type WNL versus the photon 
momentum L./c .  Dots are WNL stars, other symbols are O stars. The dot- 
ted line shows the unity-relation for Mvoo = L,/c .  Notice that  the observed 
momentum of the O-stars is slightly higher than predicted, but it is an order 
of magnitude too high for the WNL stars (from Lamers and Leitherer 1993) 

modulated (corotating?) structure in the wind (Kaper and Henrichs, 1994). 
We can conclude that  the theory is sufficiently accurate to predict and 

explain the mass loss rates of O, B and A stars, but it still fails on the level 
of understanding the inhomogeneities and variations in their winds. 
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1 I n t r o d u c t i o n  

Stellar winds from early-type stars have been studied observationally for more 
than 120 years, beginning with the detection of peculiar bright lines in vi- 
sual spectra of a few hot objects by Wolf and Rayet (1867). Beals (1930) 
first recognized that the emission features of these "Wolf-Rayet stars" (WR 
stars) were signatures of mass loss, since the observational material available 
to him showed that some of the line profiles were of the "P Cygni type". This 
distinctive shape, named because of its prevalence in the spectrum of the fa- 
mous B2pe hypergiant P Cygni, is also found in the spectra of novae shortly 
after outburst, i.e., during a time when they are manifestly experiencing ex- 
plosive mass ejection. On this basis, Beals inferred that WR stars were also 
losing mass, and concluded that "practically all of the characteristic features 
of Wolf-Rayet spectra may be explained on the hypothesis that gaseous ma- 
terial from a Wolf-Rayet star is being continually ejected in a radial direction 
and with high velocity into space". 

Thus, more than 60 years ago the modern basis for interpreting spectro- 
scopic emission features in terms of dense, extended, and expanding outflows 
had already been established. What was not initially clear was that the WR 
stars and the few objects like P Cygni (which we now call luminous blue vari- 
ables, or LBVs) are just the tip of the iceberg: they are extreme examples of 
a phenomenon that is ubiquitous among the early4ype stars. Important ob- 
servations by Wilson (1958) and Underhill (1958) provided hints that mass 
loss occurs commonly by showing that the emission features of a selection 
of O-type supergiants and giants could be traced to velocities of 500-1000 
kms -1, which are comparable to or in excess of the escape velocity. Neverthe- 
less, during the early and mid-1960s the emphasis in hot-star research was on 
static atmospheric modelling without the assumption of local thermodynamic 
equilibrium (LTE), while the field of stellar winds lay fallow. 

This situation changed abruptly as a result of technological advances that 
opened the vacuum ultraviolet region of the spectrum to astronomical obser- 
vations. The modern era of hot-star wind research began on 1965 October 
13 when an Aerobee rocket launched from the White Sands Missile Range 
in New Mexico briefly carried an ultraviolet spectrograph aloft and returned 
the first ultraviolet spectra of six early-type stars in Orion (Morton 1967a). 
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As always, a bit of good luck was required to push open a new observational 
window: Morton (1967a) writes that during the descent, 

the cameras, platform, and gyro had broken free of their mounts and 
pieces of grating, mirror, and film cassette went flying out of the open 
end of the rocket skin. Both the calcium fluoride spectrograph cam- 
era and a 35-ram camera for photographing the star field were lost, 
and a 2-day search of the impact area yielded nothing. Fortunately, 
however, the lithium fluoride film cassette was still attached and was 
recovered . . . .  

Morton's analysis (1967a, 1967b) of these hard-earned data  showed that  the 
resonance lines of highly ionized species like Si Iv, C IV, and N v exhibited 
P Cygni profiles. In contrast to the P Cygni profiles that  were typically ob- 
served in optical spectra of hot stars, velocities well in excess of the escape 
velocity were directly measured in these ultraviolet data. For the three stars 
that  make up the belt of Orion (from east to west, these are ~f, c, and ( Ori- 
onis, with spectral types of 09.5 II, B0 Ia, and 09.7 Ib, respectively), Morton 
(1967b) estimated mass-loss rates of ,,~ 1 x 10 -6 M@ yr -1 and concluded 
that  these stars would lose a few per cent of their initial mass during their 
lifetimes. It at once became clear that  garden-variety OB supergiants lose 
mass continuously at rates that  are sufficiently high to affect the course of 
their evolution. 

This result came as a complete surprise at the time. Over the past genera- 
tion, observational and theoretical efforts to understand the nature and origin 
of these stellar winds have been a dominant theme of hot-star research. It is 
a tribute to the success of these efforts that the mass loss carried by these 
outflows is now recognized to be a fundamental astrophysical process that  
not only causes individual stars to "evaporate" significantly over their short 
lifetimes (thereby altering their trajectory through the H-R diagram) but 
also dumps substantial amounts of energy, momentum, and chemically en- 
riched material into their local galactic environment (thereby influencing the 
dynamics of the interstellar medium and subsequent formation of stars). Ex- 
cellent introductions to hot stars and their winds include Kudritzki (1988), 
Kudritzki and Hummer (1990), and Owocki (1990), while Maeder and Conti 
(1994) provide an overview of the role these objects play in the evolution of 
galaxies. 

The aim of these lectures is to provide an introduction to the most useful 
observational signatures of the stellar winds of early-type stars. The goal is 
to provide an appreciation of the physical ingredients and assumptions that  
are required to obtain estimates of the physical parameters of the winds from 
these diagnostics, in particular the mass-loss rate, M, and the asymptotic 
(terminal) velocity of the wind at large distances from the star, v~.  The 
problems associated with each type of diagnostic are also discussed, in or- 
der to assess the reliability of the parameters determined from them. The 
emphasis is on Population I objects, especially O stars and BA supergiants, 
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though many of the same diagnostics can be applied to related (but more 
complicated) objects like WR stars and LBVs, and hot Population II objects 
like the central stars of planetary nebulae. 

2 Tracers of Stellar Winds 

The observable manifestations of stellar winds are all attributable to the fact 
that rapidly expanding material surrounds that star, and this material consti- 
tutes an excess with respect to an otherwise identical star whose photosphere 
manages to maintain strict hydrostatic equilibrium. The fundamental equa- 
tion that connects the hydrodynamic variables of the outflow is the equation 
of mass continuity. For a homogeneous, steady, spherically symmetric wind, 
it reduces to a formula for the mass-loss rate: 

i~/ = 4~rr 2 v(r)p(r) . (I) 

Rearrangement of (1) shows that at large distances in the wind, where v ( r )  ~., 

voo, the density decreases only as r -2 , which is much slower than the exponen- 
tial decrease characteristic of the hydrostatic layers of the photosphere. It is 
the presence and motion of this excess circumstellar material that ultimately 
permit the outflow to be observed. 

Even though they represent large density excesses with respect to hy- 
drostatic atmospheres, the stellar winds of early-type stars consist of very 
rarefied gas. For example, if we insert parameters typical of an O supergiant 
into (1), we find that at a height of 1 R,, the density of the wind is approx- 
imately 5 x 10 -15 g cm -3, which is more than three orders of magnitude 
smaller than photospheric densities. Thus, stellar winds are environments 
where radiative processes dominate over collisional processes in determining 
level populations; i.e., they are very far from being in LTE. 

The tracers of this material can be grouped into two main categories: 
spectroscopic or line diagnostics; and photometric or continuum diagnostics. 
Signatures can be found in all wavelength regions, from the radio and infrared 
(IR) through the optical and ultraviolet (UV) to X-rays and possibly even 
7-rays (see, e.g., Chen et al. 1996). The emission of these extremely energetic 
photons is believed to result from time-dependent processes in the wind and 
not from the steady-state outflow itself, and will not be discussed in detail 
here. 

3 Spectroscopic Diagnostics 

Quite generally, spectroscopic observations of absorption or emission lines 
formed in the atmospheres of stars can be characterized by their positions 
(i.e., their radial velocities), their strength (i.e., their equivalent widths), and 
their overall morphology (i.e., the shape of their flux profiles). Each of these 
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measurable quantities can be used to obtain information about the presence 
of stellar winds. 

For example, systematic trends showing decreasing blue shifts for lines 
formed at increasing photospheric depth - the so-called Balmer progressions 
or velocity-excitation relations - are frequently used as stellar wind indicators, 
because they imply the presence of a deep-seated velocity field that increases 
outwards and presumably drives mass loss (Hutchings 1979; Kaufer et al. 
1997). Systematic trends in the strength of photospheric lines as a function 
of luminosity may also provide evidence for an outward accelerating velocity 
field, particularly if they are accompanied by asymmetric line profiles with 
extended blue wings. The velocity gradient is the essential physical ingredient 
here, because it systematically shifts the absorption profile of the particular 
ion to smaller wavelengths at greater atmospheric heights, with the result 
that more atoms can participate in the formation of the flux profile (hence 
the increase in the equivalent width of the line) and the flux profile has an 
extended blue wing (since some of the profile is actually formed at blue-shifted 
velocities). Mihalas (1979) and Kudritzki (1992) provide useful discussions of 
this phenomenon, which is nicely illustrated for a sequence of B1 supergiants 
by Massa et al. (1992). 

However, the dominant spectroscopic signatures of stellar winds are the 
profiles associated with lines that are formed in the rapidly expanding part of 
the wind. Many profile morphologies are recognized as being formed in out- 
flowing material. These shapes were classified qualitatively by Beals (1950), 
and although his scheme is not much used these days, it still provides a use- 
ful introduction to the phenomenology associated with stellar wind profiles. 
Beals recognized eight classes of wind profiles. 

T y p e  I: This is the classic P Cygni profile, which consists of a blue-shifted 
absorption "trough" and a red-shifted emission "lobe". The origin of this 
shape is discussed in Sect. 3.2. 

T y p e  II: These profiles are composed of a Type I profile superimposed on 
a broad, shallow absorption line, typically one from the Balmer series of 
hydrogen. 

T y p e  III: This morphology consists of red- and blue-shifted emission peaks 
and a central reversal. It occurs rarely in OB stars, and then only in some 
lines of rapid rotators. Although its origin is not completely understood, 
this shape is due to a combination of the velocity fields associated with 
radial outflow and rapid stellar rotation; see, e.g., the profiles calculated 
by Petrenz and Puls (1996), in particular their Figs. 12 and 14. 

T y p e  Iv: These profiles are similar to those of Type I, except they also have 
one or more extra absorption components in the absorption trough or 
near the center of the emission lobe. 

T y p e  v: These "pure emission" profiles are approximately symmetric about 
the systemic velocity of the star and do not exhibit the absorption trough 
characteristic of P Cygni profiles. The spectra of WR stars are dominated 
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F i g .  1 .  A selection of line profile morphologies attributed to stellar winds, 
with classifications according to the scheme of Beals (1950). The wavelength 
interval corresponding to a velocity of 100 kms -1 is indicated by a horizontal 
bar in the lower right-hand corner, and the position of the red component 
of the C Iv doublet is marked by a vertical line (and the sharp interstellar 
component) 
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Table 1. Selected atlases of stellar wind profiles 

Reference Wavelength Source Objects 

Walborn et al. (1985) 

Snow et al. (1994) 

Walborn et al. (1995) 

Walborn and Bohlin (1996) 

Stahl et al. (1993) 

Hanson et al. (1996) 

1200-1900/~ IUE/SWP O stars 

1200-3000 ~ IUE O3-F8 stars 

1200-1900/~ IUE/SWP B stars 

1000-1200/k Copernicus OB stars 

4050-9050/~ FLASH P Cygni 

K band (2#) various OB stars 

by such emission lines, which can also be found in spectra of OB super- 
giants. 

T y p e  vI: This strange morphology consists of a central emission feature that 
is superimposed on a broad underlying absorption line. The emission is 
frequently double peaked. These profiles are most commonly associated 
with Be stars, and consequently a complicated structure of a rotating, 
expanding stellar wind is implicated in their formation. 

T y p e  vii: Beals (1950) describes this morphology as "simply an ordinary 
undisplaced absorption line such as may appear in any normal star . . . " ,  
and as such it perhaps best serves as a reminder that not all the lines in 
the spectrum of an early-type star are formed in the moving envelope. 

T y p e  viii: Lines of this type are blue-shifted absorption features, which 
Beals (1950) thought of as Type I profiles without the emission lobe. 
The displaced absorption is frequently asymmetric, with a shallower blue 
wing that is presumably due to the velocity gradient through its region 
of formation. 

Part of this classification scheme is illustrated in Fig. 1, which shows nor- 
malized flux profiles as a function of wavelength offset from the rest velocity 
(corrected for the systemic velocity of the star). Examples of stellar wind 
profiles can be found throughout the observable regions of the spectrum, 
from the UV through the optical to the IR. Table 1 lists several atlases that 
illustrate the rich variety of wind profile morphologies implied by the Beals 
classification scheme. 

3.1 Sca t t e r ing  Versus p2 F o r m a t i o n  Processes 

The resonance lines of singly or multiply ionized species that are typically 
found in the UV region of the spectra of early-type stars are superb tracers 
of the rarefied material found in stellar winds. By definition, resonance lines 



Observations of Hot-Star Winds 193 

are the lowest energy transitions that arise from the ground state. Conse- 
quently, these transitions have very short lifetimes, which in turn means that 
they occur frequently and are intrinsically strong. In particular, the lifetime 
of a resonance transition is usually much shorter than the time required for 
radiative excitations or collisions, especially in environments characterized 
by dilute radiation fields and low particle densities. Thus, when an electron 
is promoted from the ground state to the first permitted level by absorption 
of a stellar continuum photon of the appropriate frequency, it will de-excite 
very rapidly and a resonance line photon will be emitted. The net result of 
such an interaction is that the incoming, almost radially directed, stellar pho- 
ton will be scattered into some different direction, thereby imparting radial 
momentum to the ion without changing the population of the ground state. 
Consequently, in low-density gases the degree of excitation of an ionic species 
tends to be very low and there is always a large pool of electrons sitting in 
the ground state that are capable of scattering radiation. 

These factors make resonance lines strong and easily detectable through- 
out the entire volume of the wind where the ion exists. Since these lines are 
formed by scattering of continuum photons, their strength depends linearly 
on p, the density of matter, and also on the mean intensity of the dilute radi- 
ation field from the star. The resonance lines that are important depend on 
the ionization balance of the wind, which is largely determined by the radia- 
tion field. For O- and early B-type stars, they include multiply ionized species 
like C Iv, N v, and Si Iv; for mid- to late B- and early A-type supergiants 
the resonance lines of singly ionized C, Mg, A1, Si, and Fe are important.  

However, as Fig. 1 indicates, wind profiles can also be found in the excited 
(i.e., non-resonance) transitions that are typically located in the optical and 
infrared regions of early-type spectra, especially those arising from H, He I 
and He n. They are usually the result of recombinations from a higher ioniza- 
tion stage, which are followed by radiative de-excitations that  create photons. 
These transitions are intrinsically weaker than resonance lines; furthermore, 
since the process of recombination requires the interaction of an electron and 
an ion, they are sensitive to #2. Consequently, and in contrast to resonance 
lines, excited transitions are only sensitive diagnostics of the densest regions 
of the wind, which are usually the parts closest to the star. An important 
exception occurs if a large population accrues in the lower level of an optical 
transition for some reason (e.g., the level is metastable or susceptible to non- 
LTE/dilution effects), in which case the transitions arising from it behave a 
bit like resonance lines. The He I ;~5876 triplet in the "yellow" region of the 
visible spectrum is an example of such a transition. 

3.2 Dissecting the P Cygnl Profile 

Before we can determine what information about the stellar wind is contained 
in line profiles like those shown in Fig. 1, we need to understand how these 
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Fig. 2. (a) Schematic diagram of the scattering process. (b) The isovelocity 
contours associated with the velocity field of a smooth, spherically symmetric 
stellar wind 
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profiles are formed. The P Cygni profiles (Beals Type I) of resonance lines 
provide the key to understanding these morphologies. 

The basic picture is illustrated schematically in Fig. 2(a), which shows a 
plane through a smooth, spherically symmetric stellar wind. Four ions (la- 
belled a-d) are shown, all of which are located at the same radial distance 
from the star and therefore experience the same expansion velocity (which 
is indicated by short, radially directed vectors). Ions at larger (smaller) radii 
than those illustrated will be moving faster (slower), since the velocity field of 
a smooth wind increases monotonically outwards. Stellar continuum photons 
are injected continuously into the wind from the star along paths that are 
nearly radial. If their wavelength matches the Doppler-shifted wavelength of 
the resonance line transition associated with ions a-d, then the photon can 
interact radiatively; since the wind material is moving away from the star, 
this means that the wavelength of the continuum photons must be blueward 
of the rest wavelength of the resonance line. An important consequence of 
this "tuning" is that if a continuum photon can interact with the resonance 
transitions at some particular radius, it cannot interact with ions at larger or 
smaller radii, because their Doppler shifts will be greater or smaller, respec- 
tively. Consequently, at larger or smaller radii the wind is transparent to the 
photons that can be scattered in the resonance lines of the ions indicated in 
Fig. 2. 

As described above, the net result of this interaction for a resonance line 
is that the incoming photon is scattered into some different direction. These 
scatterings have two consequences for a distant observer (who is arbitrarily 
situated in the z-direction in Fig. 2): (1) photons that were destined to be 
recorded by the observer can be removed from the line of sight, as in the 
case of the scattering illustrated for ion "a"; and (2) photons that were not 
originally heading in his/her direction can be redirected into his/her tele- 
scope, as illustrated for ions "b" (where the photon is forward-scattered into 
the direction of the observer from an ion in the hemisphere approaching the 
observer) and "d" (where the photon is back-scattered from an ion in the 
receding hemisphere). Since the observer's direction subtends a very small 
fraction of the 4 7r steradians surrounding the star, there is a good chance 
that an originally unobservable photon will be scattered into a new direction 
that is also unobservable, as illustrated for ion "c". Some photons will even 
be back-scattered directly to the stellar surface where they will be reabsorbed 
by the photosphere. 

We can be more specific about the distribution of the scattered photons 
as a function of position in the flux profile seen by the distant observer. 
This position may be given in terms of wavelength, frequency, or "radial 
velocity"; we will usually use the velocity coordinate, but will refer to it as 
"line-of-sight" velocity, (VLos), in order to avoid confusion with the radial 
component of the velocity field associated with the stellar wind. The V,~os of 
a scattered photon depends on the Doppler shift due to wind expansion of 
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the ion that it interacted with and the projection of this displacement onto 
the observer's line of sight, i.e., the cosine of the angle ~ between the velocity 
vectors and the z-axis indicated in Fig. 2(a). Contours of equal VLos for the 
velocity field of a typical expanding stellar wind are shown in Fig. 2(b), where 
they are labelled in units of voo with positive velocities denoting recession. 
Of course, these contours in the equatorial plane are actually surfaces in 
3D space; they are sometimes called "common direction" (CD) surfaces since 
they require the specification of the direction of an observer (see, e.g., Rybicki 
and Hummer 1978). 

The isovelocity contours permit the redistribution of continuum photons 
to be mapped to positions in the observed line profile, which can be conve- 
niently divided into an absorption part and an emission part. This mapping 
is illustrated in Fig. 3 for a line of moderate strength (panel a) and a strong 
line (panel b). Three regions of the wind contribute to the profile: 

1. Material in the column projected against the disk of the star removes 
continuum photons from the line of sight at blue-shifted velocities that 
range from 0 to the maximum expansion velocity where the ion still exists 
(which is frequently voo), thereby producing the blue-shifted absorption 
trough. Ion "a" provides an example of the removal of a photon at V~.os : 
-0 .8  voo ). 

2. MateriM at other places in the approaching hemisphere adds photons 
at blue-shifted velocities (e.g., ion "b": VLos= -0.4voo) by forward- 
scattering, which collectively produce the blue-shifted emission shown 
in the middle panels of Fig. 3. In contrast to the absorption trough, the 
emission at a particular V~os includes contributions from many different 
radii that will in general sample a wide range of densities, temperatures, 
and ionization equilibria. 

3. Material in the receding hemisphere adds back-scattered photons at red- 
shifted velocities (e.g., ion "d": V~.os = +0.4 voo) to the emission profile. 
The emission profile is not symmetric about V~.os = 0 because back- 
scattered photons originating in the shaded "occultation region" are re- 
absorbed by the stellar core before they can reach the observer. The 
differences between the blue- and red-shifted emission are especially pro- 
nounced for winds that expand more slowly, since in these cases the star 
subtends a larger solid angle at radii where the density is still high enough 
for many scattering interactions to occur. 

The bottom panel shows how a P Cygni profile results from adding the ab- 
sorption and emission contributions from these regions to produce the char- 
acteristic morphology of a blue-shifted absorption trough and a red-shifted 
emission lobe. 

The comparison between moderate and strong scattering lines in Fig. 3 is 
also instructive. The upper panels show that for a line of sufficient intrinsic 
strength, all the continuum photons can be scattered from the observer's line 
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Fig.  3. Schematic diagram showing the formation of a P Cygni profile of a 
UV resonance line for the case of (a) a moderately strong line; and (b) a 
strong line 

of sight, whereas a weak line in the same wind (i.e., same ionization and den- 
sity structure) wilt not completely extinguish the continuum light directed 
toward the observer. By the same token, the strong line will scatter more 
photons towards the observer, so that  its emission component (middle panel) 
is stronger at all velocities. This is a reflection of the fact that scattering is a 
conservative process: since photons are not created or destroyed in the wind 
(though some are lost through back-scattering to the photosphere), and since 
the absorption component of a strong line removes more photons from the ob- 
server's line of sight compared to a weak line, more photons must be forward- 
and back-scattered towards the observer. 1 Thus, despite the total extinction 
of the continuum source by the cylinder of material projected against the 
disk of the star, the P Cygni absorption trough of a strong line formed in a 
smooth,  spherically symmetric wind never exhibits extended regions of zero 
flux. If the ion responsible for the strong resonance line exists throughout 
the wind, then the only place where its absorption trough will have zero 
flux is at VLos = v~o, since forward-scattering from material anywhere else in 
the approaching hemisphere will necessarily be seen at smaller line-of-sight 

1 This argument breaks down after all photons have been removed from the ab- 
sorption trough, at which point the strength of the emission lobe also saturates. 
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velocities. Put another way, the isovelocity contours collapse to a point for 
VLos = :kvoo, and the positive case is not observable due to occultation by the 
star. Hence, for monotonically expanding winds, the maximum velocity seen 
at the blue-edge of the absorption trough of a strong line is a good diagnostic 
of  ~/oo. 

P Cygni profiles are formed when scattering dominates the transfer of ra- 
diation through the wind. If instead photons are created in the wind through 
radiative or collisional ("p2") processes, the absorption component tends to 
be filled in by locally produced photons. Similarly, the emission component 
can become very strong, since the number of photons that emerge from the 
wind is not simply a reflection of the number of stellar continuum photons 
initially injected. Unless there is some additional factor associated with the 
physics of the transition in question (e.g., the lower level is overpopulated for 
some reason), "pure emission" profiles are formed in these cases. Although the 
atomic processes responsible for these spectral features are more complicated 
than resonance line scattering, the mapping between isovelocity contours and 
position in the profile remains the same. Of course, more complicated veloc- 
ity fields (e.g., coupling between rotation and expansion) or geometries (e.g., 
disks) will change the shape of the contours, and the interplay between the 
velocity field, density distribution, and ionization balance in the wind are ul- 
timately responsible for the variety of wind profile morphologies catalogued 
by Beals. 

Although P Cygni profiles are unambiguous signatures of outflow, the 
same is not true of pure emission features. For example, there are a number 
of narrow emission lines in the spectra of O stars (see, e.g., Morrell et al. 
1991 or Underhill 1995a,b for recent discussions), most of which are formed 
by two-electron processes ("dielectronic recombinations") in deep layers of the 
atmosphere. The most famous of these are the N III AA4634, 4640, 4641 lines, 
whose formation in static, plane parallel atmospheres was first explained by 
Mihalas and Hummer (1973). Although the strength of these features often 
suggests that they are partially formed in the low-velocity region of the stellar 
wind, they should be distinguished from the very broad stellar wind profiles 
typical of Beals Type III or v. 

3.3 Ca lcu la t ion  of  Line Profi les  Fo rmed  in Stel lar  W i n d s  

The preceding discussion of the P Cygni profile also illuminates many as- 
pects of the problem of computing line profiles formed in a stellar wind. In 
general, this is a formidable task; but, as Castor 1970 realized, it can be 
handled very effectively by combining the formalism of escape probabilities 
(see, e.g., Sect. 3.2 of Hubeny, this Volume) with the Sobolev approximation. 
What follows is a sketch of this approach as it applies to smooth, spherically 
symmetric, monotonically expanding winds. For rigorous discussions of this 
elegant technique, see Castor 1970, l~ybicki and Hummer (1978), l~ybicki 
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(1984), or Mihalas (1978; Chapter 14). Although the escape-probability for- 
malism is at present the most widely used, alternative approaches exist: see, 
e.g., Lucy (1971). 

The equation of radiative transfer in the observer's frame for spherically 
symmetric geometry is given, e.g., by (27) in Hubeny's lectures. 2 It can be 
reformulated in the Cartesian "p-z" geometry illustrated in Fig. 2 as an or- 
dinary differential equation for rays specified by their impact parameter p: 

d I v ( z ; p )  _ k~, (z;p)[Su (z;p) - Iv (z;p)] (2) 
dz 

where r, z = r #  and p = r x/1 - #2 are measured in units of R ,  and # - cos 0 
is the cosine of the angle between a point in the wind and the direction to the 
observer, as indicated in Fig. 2(a); k~ is the absorption coefficient; and where 
"complete redistribution" has been assumed (see Sect. 3.1 of Hubeny, this 
Volume). This reformulation is a great simplification, and allows the "formal 
solution" to be written down immediately. If I* is the continuum intensity of 
the star at frequency v and z, = ~ - -  p2 denotes the z-coordinate associated 
with the stellar surface for p _< 1, then the formal solution is: 

l f;,'2Yoo S~(z ' )  e -'~(~ ) dr , (z ' )  for p > 1 

I. ,(p) = [ I "~'=~ ¢ t.,~.~-,.(~') a~- ¢.,~ -- r.,~-r.(oo) for p < 1 (3) 

where the optical depth variable is 

= k (z';p)dz' , (4)  

w i t h  Zmi n = --OO for p ~ 1 and zrnin = z, for p < 1. Once IL,(p) is known, the 
flux profile can be calculated directly: 

F~,/F~ = [I~,(p)/~] 2pap  . (5) 

In the case of line radiation, (3) can be viewed as the mathematical equiv- 
alent of Fig. 3. It says that for rays projected against the stellar disk (i.e., 
p < 1) the flux received by a distant observer is made up of a "direct" com- 
ponent that  is extinguished by material in front of it (i.e., the absorption 
trough) and a "diffuse" component (i.e., sources of emission due to forward- 
scattering). For rays not projected against the stellar disk (p _> 1), only 
diffuse light is sent to a distant observer. In the case of UV resonance lines, 
the diffuse light is entirely due to scattering. 

Since (3) is a formal solution, the source function and the optical depth 
for the line of interest need to be known before it can be applied. The level 

2 For convenience, results presented by Hubeny (this Volume) will be referred to 
by their equation numbers in his lectures preceded by "I-I': e.g., (H27). 
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populations for resonance lines are controlled by radiative transitions between 
only two levels, and so the source function for the two-level atom given by 
(H82)for the case_ of "pure scattering" (e = 0) is directly applicable. Hence, 
Su = J ,  where J is the frequency-averaged mean intensity of line radiation 
defined by (HS1). Schematically, the mean intensity can be viewed as a com- 
petition between the number of continuum photons that  arrive at location 
r versus the number of line photons that  escape from the same location, so 
that  

7(r) = probability that a stellar continuum photon penetrates to r (6) 
probability that a line photon escapes from r 

These quantities are related to the angle- and frequency-averaged escape 
probabilities defined by (H88), which in turn depend fundamentally on the 
optical depth variable for different directions /J at location r in the wind. 
Consequently, the computation of a line profile pivots on the computation of 
n,, after which the calculation can be charted as r~ --+ escape probabilities -+ 
ff -+ S~ -+ Iv (p) -+ F~. 

Unfortunately, the calculation of I-~ for arbitrarily moving media is com- 
plicated by the frequency dependence of the absorption coefficient, k~. In 
static atmospheres, kv is often written as the product of a spatial part and 
a normalized absorption profile that accounts for the frequency dependence 
(and is generally assumed to be constant); 

= k0( ) ×  (Au) , (7) 

where f + ~  ~(Alu) du = 1 and Au = u - Uo for a line with rest frequency 
u0. This separation is not strictly valid in a moving atmosphere, because u is 
itself a function of r owing to the bulk motion of the fluid, but the functional 
form can be recovered by allowing explicitly for the Doppler shift in frequency, 
which can be accomplished by redefining Au = u-u0+[u0 cos ¢ v(r)]/c, where 
¢ is the angle between the radial direction and the direction of scattering, 
so that  cos ¢ v(r) is the projection of the expansion velocity onto the new 
direction of flight. Although this simple redefinition allows us to retain the 
form of (7), it also shows that in a moving medium, k~, - k~, (r, v, ¢), i.e., 
that  frequency and spatial variables are intertwined, so that  many different 
combinations of positions and frequency contribute to a particular frequency 
in the observer's frame; recall, e.g., the isovelocity contours illustrated in 
Fig. 2(b). 

However, in the presence of sufficiently large velocity gradients, the "tun- 
ing" required for a photon to excite a line transition localizes the material 
that  is capable of absorbing it, and this breaks the coupling between fre- 
quency and spatial variables. This localization is the essence of the Sobolev 
approximation, which is sometimes called the "large velocity gradient" or 
"supersonic" approximation. Fig. 4(a) illustrates the Sobolev approximation 
in a schematic way for the frame of reference that  is moving with the mean 
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Fig. 4. Schematic illustration of the Sobolev approximation (after Owocki 
1990) and the distribution of Sobolev optical depth for (a) an infinitely thin 
transition centered on )~0; (b) a transition with a Gaussian profile character- 
ized by a 1-sigma dispersion of AAD 

flow of the expanding wind. The star is receding with respect to this "co- 
moving frame", and the thick solid line shows the systematic redshift of a 
photon emitted with wavelength .\, at the stellar surface as a function of 
radius. Consider a bound-bound transition with rest wavelength A0 in the 
spectrum of an ion, and suppose for the moment that the absorption profile 
p(AA) of this transition is a delta function. The photon A, travels unimpeded 
through the material of the stellar wind until its wavelength in the comov- 
ing frame matches ;~0, whereupon it may be absorbed by the line transition 
and re-emitted in some other direction. Three possible scatterings are indi- 
cated in the upper panel of Fig. 4(a), which correspond to forward-scattering 
(cos ¢ = 1; i.e., the photon continues along its original course); sideways- 
scattering (cos¢ = 0); and back-scattering towards the star (cos¢ = -1) .  

The key point is that since the wind is an expanding medium, the material 
in any direction is receding from the scattering site, just as all galaxies recede 
from one another in the case of the expanding universe. Thus, irrespective 
of the scattering angle, the wavelength of the redirected photon in the co- 
moving frame must be redshifted, which means it cannot interact again with 
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a transition of wavelength Ao and is free to travel through the wind along 
its new trajectory. As a result, the processing of stellar continuum photons 
through a bound-bound transition is localized to a single radius, Pq, which 
is determined by A,, and the variation of optical depth with radius is the 
step-function shown in the lower panel of Fig. 4(a). For this simplified case, 
the solution of the equation of radiation transfer reduces to determining the 
fraction of incident photons that are scattered into the different directions ~. 

In practice, the absorption profile of a transition is never a delta function, 
but has a finite width AA associated with it; e.g., the absorption profile 
is dominated by thermal Doppler broadening in the low-density environ- 
ments typical of hot-star winds, so that  ~ is a Gaussian characterized by 
a root-mean-square dispersion parameter (sigma) of AA = AAo = vtaAo/c, 
where Vth is the thermal velocity of the parent ion. This case is illustrated 
in Fig. 4(b), which shows that  after travelling freely through lower regions 
of the wind (as before) the stellar photon first impinges on the blue wing of 
the line. The scattered photon will in general be redirected and redistributed 
in wavelength (frequency), so that it will perform a random walk in space 
and wavelength that  takes it from the weak absorption typical of the blue 
wing to the strong absorption of the line core. The step size associated with 
this random walk gets quite small as the photon makes its way towards the 
line core, but its eventual emergence at the red wing - possibly after many 
scatterings - is assured because of the overall expansion of the wind. 

However, even though the number of scatterings may be very much larger 
than in the case of the infinitely narrow line, the net result is that a photon is 
absorbed at the blue wing of the line, emerges after a final scattering in the 
red wing, and continues its travel in a different direction but without further 
interactions, exactly as before except that  the interaction occurs over a larger 
range of radii. As shown in the lower panel of Fig. 4(b), the finite width of the 
line softens the step-function character of the radial distribution of optical 
depth, but does not affect the essential localization of the interaction region 
provided that the velocity gradient is su~eiently steep. The relevant figure of 
merit to describe "sufficient steepness" is the Sobolev length, L, which is the 
distance over which the mean flow speed of the wind increases by Vth, and 
can be thought of as the local optical depth scale height. From Fig. 4(b), 
d r / d r  ,-~ vth/L or L = Vth (dr /dr )  -1. The Sobotev approximation is valid 
when L is much smaller than the distance over which other hydrodynamical 
variables (e.g., density) change. The local density scale height, Lp, may be 
estimated from (1): 

_ _  U ~)th P ~-. - -  >> - -  = L (8) 
np =_ ]dp/dr] Idv/dri }dr/dr t ' 

since Vth ~, 10 km s -1 while v ~, 1000 km s -1 for hot-star winds. Thus, 
the Sobolev approximation is generally excellent, except at small velocities, 
where v ~ Vth. 
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This localization of the radiative transfer enormously simplifies the cal- 
culations of r~. Since the radiative transfer occurs over spatial scales that  are 
much smaller than other hydrodynamical scale lengths, the spatial part of 
absorption coefficient (7) can be taken outside the optical depth integral (4): 

// k0( ) + a z ' ,  (9) 

which can then be transformed in a straightforward way to an integral over 
frequency in the comoving frame (i.e., spatial variables can be exchanged 
for frequency variables). For Gaussian absorption profiles, the integral can 
be done analytically, which represents a tremendous simplification even com- 
pared to static atmospheres. An important result to emerge from these manip- 
ulations is the expression for the Sobolev optical depth in the radial direction 
at a particular radius (or, equivalently, velocity) in the wind. For a transition 
between a lower level l and an upper level u of an ion, this is 

\ m e  c /  

where the first terms on the right-hand side denote the strength of the transi- 
tion in terms of its classical oscillator strength (where all symbols have their 
usual meanings), hi,, is the rest wavelength of the transition, gi (hi) and g~ 
(n~,) are the statistical weight (number density) of the lower and upper levels, 
respectively, and d r ~ d r  is the local radial gradient of the velocity field. 

Once r~(z) is known, the calculation of a line profile formed in the stellar 
wind can proceed according to the plan outlined before. Several computer 
programs are available for this purpose, the most widely used of which is 
the efficient "Sobolev with Exact Integration" (SEI) program described by 
Lamers et al. (1987) ~. The idea of using the Sobotev approximation to com- 
pute the source function, but doing the flux integration "exactly", is due to 
Hamann 1981 and is in contrast to the previous approach of relyin~ on the 
step-function behaviour in v~(r) inherent to the Sobolev approximation to 
simplify the integrations as well (e.g., Castor and Lamers 1979). With the 
SEI approach, it is straightforward to allow for the radiative coupling of the 
source functions of closely spaced doublets (Olson 1982; see also Lamers et al. 
1987), which is of practical importance since most of the UV resonance lines 
are blended doublets. The SEI formalism is also sufficiently flexible that  gen- 
erMizations to allow for deviations from spherical symmetry (e.g., Bjorkman 
et al. 1994; Cranmer 1996) or monotonic expansions (e.g., Puts et al. 1993) 
can be implemented in a simple way. More complicated situations like these 
can also be treated by using a Monte Carlo approach to radiative transfer: 
see, e.g., Cutoff et al. (1972), Lucy (1983), or Puls et al. (1994). 

3 A FORTRAN version of ~hls program can be downloaded from the homepage of 
Collaborative Computer Project No. 7 (CCPT) on the Analysis of Astronomical 
Spectra. Its URL is currently h t t p : / / s t a r ,  arm. ac.uk/cepT/ . 
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3.4 U V  R e s o n a n c e  Lines 

Equation (1) shows that the mass-loss rate for a spherically symmetric wind 
can be calculated once the radial distribution of velocity and mass density 
are known. Although quite a lot of information about the "velocity law", 
v(r), is encoded in the shape of the P Cygni profile, it is not possible to mea- 
sure the density distribution directly because the winds of hot stars cannot 
be spatially resolved at UV wavelengths. On the other hand, the strength 
of the absorption and emission components constrain the total number of 
ions of the species responsible for the resonance line that are present in the 
wind. Consequently, the general strategy for extracting information from the 
P Cygni profiles of UV resonance lines is to use the integrated line strength 
from unsaturated profiles to constrain the left-hand side of (1), and to rely 
on the velocity law (which is best determined from strong or saturated lines) 
for information concerning the radial distribution of the material. The line 
strength and shape of the velocity law are determined by fitting synthetic 
profiles computed from parameterized models of the stellar wind to observed 
line profiles. 

Consider the resonance line of ion j of the element with atomic number 
k. Let the mass of a particle of element k be rn~ and its abundance by weight 
be X~; then, if nj~(r) and nk(r) represent the number densities of the ion 
and its parent element, respectively, it follows that 

njk( ) = = ' (11) 

where qjk(r) =-- njk(r)/nk(r) is the fraction of element k that exists in the 
ground state of ion j, and where the expression for p from (1) has been 
substituted. We have previously argued that the degree of excitation will be 
low for ions in a rarefied medium, so that to a good approximation all of 
the ions k will be in their ground state, which implies that the local Sobolev 
optical depth in the radial direction given by (10) can be simplified: 

\ m e  c~ 

The usual approach is to parameterize %v (v) as the product of the integrated 
optical depth (for ion j of element k), 7jk, and a normalized function of 
velocity, ~'(v; a) that is defined by adjustable parameters a = (al ,  ~2, . . . ) ,  
so that 

Lamers et al. (1987) discuss the motivation for some of the more popular 
functional forms of 9c(v; a). It is not strictly necessary to assume a functional 
form for the radial distribution of optical depth, since the absorption trough 
of unsaturated P Cygni profiles contains sufficient information to determine 
this empirically (see, e.g., Haser 1995 or Haser et al. 1995 for an alternate, 
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and probably preferable, approach). Nevertheless, with this ansatz, the direct 
integraLion of (12) can proceed in terms of known parameters: 

ru~ dv = 7~  .~(v; c~) dv 

=7~k 

= fzu Ao nj~ dr 
\me c /  

\ m ~  c /  

where ~ k  is the column density of ion j of element k between the surface 
of the star and the observer. The parameters a and Tjk are determined from 
the fit to the profile, and hence Afjk is also known. 

However, in order to fit the profile, the velocity law that describes the 
distribution of velocity as a function of radius must also be determined. The 
key parameter (which is traditionally called ",J") defines the steepness of 
the spatial velocity gradient associated with the expansion. There are several 
versions of the "beta-velocity law" that are distinguished by their treatment 
of the velocity field near the photosphere, but the conventional form is 

v(r; vo, 7 3 ) = v o J r ( v c ~ - v o )  1 -  , (15) 

where v0 is the outflow velocity deep in the wind 4. Fig. 5 shows the shape 
of the beta-velocity law for several values of 73, and emphasizes that small 
values of t7 signify steeper ("faster '>) gradients. This functional form reflects 
the necessity of lifting the material out of the gravitational potential welt of 
the star, though the exact value of ~ depends on details of the mechanism 
responsible for driving the wind; see, e.g., the lectures by Lamers (second 
contribution to this Volume) on the theory of line-driven stellar winds. The 
theory of radiatively driven stellar winds predicts that fl should be near 0.8 
for O-type stars (Pauldrach et el. 1986). 

For a spherically symmetric wind that is smooth and steady, we have 
already seen that the position of the blue edge of the absorption trough of a 
strong P Cygni profile is a diagnostic of voo. The emission lobe of P Cygni 
profiles provides information about/3; see, e.g., Fig. 6, which shows that both 
the shape and strength of the emission lobe are sensitive to the velocity 
gradient for the case of a strong line. Physically, this sensitivity arises from 
the inverse proportionality between density and velocity implied by (1): for 

4 Formally, v0 is the wind velocity at r = R,, though it is preferable to think of it 
as the velocity at the sonic point (i.e., the sonic velocity for the ion) since this 
is where deviations from the hydrostatic density stratification start to become 
significant. 
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Fig.  5. The beta-velocity law given by (15) as a function of radius for 
v0 = 0.01 voo and several values of fl 

a fixed i~/, a "slower" velocity taw (larger fl) results in higher densities of 
material at small radii, which enhances the number of photons scattered 
towards the observer at small values of VLos, all other things being equal. 
Weaker lines also respond in a similar way to changes in/3, but in practice the 
parameters associated with the velocity field are more difficult to disentangle 
from the other factors (e.g., qjk(r), ~k)  that affect their shapes. Thus, the 
main parameters associated with the velocity field of the wind, voo and/3, 
can both be determined from the P Cygni profiles of strong UV resonance 
lines. 

Suppose that  we have used our favourite computer program to achieve 
an acceptable fit of the P Cygni profile of an unsaturated UV resonance line. 
In order to do this, we have had to overcome the usual sort of practical 
problems, like rectifying the observed data (which can be difficult in the UV 
due to heavy line blanketing) and allowing for the underlying photospheric 
line (either by using an observed, purely photospheric template spectrum or 
by computing the profile in some way). At the end of this process, we've 
determined: 

* the parameters v0, voo, and/3 that  define the velocity law. 
® the total optical depth of the resonance transition, "~k, and hence its col- 

umn depth, A/'jk, via (14). 
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Fig.  6. P Cygni profiles of a strong resonance singlet line calculated for 
several values of the velocity-law parameter ft. More emission results from 
"slower" velocity laws 

q j k  ~z 

and s o  

® the parameters a describing the distribution of opticM depth as a function 
of velocity (or radius). 

How close does this information get us to h}f? The column depth can also 
be determined by direct integration of (11), which, after some rearranging 
becomes 

r 2v(r) dr = 4 r ~ - -  njk(r) dr = 4• • . (16) 
. z~(k . 

Following Howarth and Prinja (t989), the mean value of qj~(r) can in addition 
be defined by 

f~ q~.(.)/ [...(.)] d.  72 q~'(')/ ['~"(")] d.  
fj~ 1 / [ . '  .(.)] d. Z(.0, ~.., ~) , (lV) 

mk H~k (lS) 
M ~j~ = 4 ~ x ~  z(v0, ~ ,  Z) 

Everything on the right-hand side has been measured or is otherwise known, 
with the possible exception of X~, which has to be determined from photo- 
spheric analysis of the star or simply assumed. 



208 A.W. Futterton 

1,5-.1 Si IV C IV 

0 . 0  - O , O  - , . . . . . . . . . .  , . . . .  

-4  -2 0 2 4 -4 -2 0 2 

v ~  / 1ooo (kin s")  Yu~ / 1000 (kin s-') 

Fig. 7. An IUE spectrum of~ Per (SWP 34559) showing the P Cygni profiles 
of two UV resonance lines. Left: the unsaturated Si tv doublet, with a soft 
blue edge and DACs in the absorption trough. Right: the saturated C Iv dou- 
blet, with a soft blue edge and an extended black trough. The rest positions 
of the blue and red components of the doublets are marked; the velocity scale 
refers to the blue component 

However, we ultimately fail to determine iV/because we don't know ~j~: 
it is simply not possible to measure the ionization fraction of an element on 
the basis of a single line. Usually, the ionization balance can be constrained 
by examining the strength of lines from the adjacent stages. Unfortunately, 
the resonance lines of stages adjacent to those responsible for the observed 
P Cygni profiles usually fall in the extreme UV region of the spectrum, where 
the flux of early-type stars is small owing to absorption in the Lyman contin- 
uum of interstellar hydrogen. To make matters worse, theoretical predictions 
are not especially helpful: if the prediction is that the ion is the dominant 
stage, then the P Cygni profile is invariably saturated, and only provides a 
lower limit on .hfjk. Alternately, if the ion is a trace stage, theoretically pre- 
dicted values of its qjk are uncertain since they depend sensitively on the 
details of the calculation (e.g., inclusion of X-rays from shocks, inclusion of 
line blanketing in the extreme UV region of the spectrum; see Pauldrach et al. 
1994) that are not yet considered to be completely reliable (Groenewegen and 
Lamers 1991). The only option at present is to try to estimate qjk by com- 
paring the values of ~I'qj~ obtained from UV resonance lines with mass-loss 
rates determined from other diagnostics that are not sensitive to ionization 
(e.g., radio continuum measurements; see Howarth and Prinja 1989). So, for 
the moment, we are left in the unsatisfying situation that the best qualitative 
tracers of the diffuse gas in stellar winds are not the best estimators of the 
mass-loss rate. 

To compound these difficulties, there are also complications with the de- 
termination of the velocity law from the P Cygni profiles of UV resonance 
lines. The problem is that the blue edges of the absorption trough of strong 
lines are r~rely observed to be as steep and well defined as illustrated in 
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Fig. 8. P Cygni profiles of a strong resonance singlet line calculated for sev- 
eral values of the velocity dispersion parameter Avturb. These calculations 
assume that the dispersion is constant throughout the wind, and show that 
increasing the size of AVturb softens the blue edge, extends the region of 
saturation in the absorption trough, and shifts the emission peak redward 

Figs. 4 and 5, but approach the continuum more gradually. Consequently, 
the interpretation of the position of the blue edge as a "clear-cut" diagnostic 
of voo is compromised. This deviation from the classical P Cygni shape is 
illustrated in Fig. 7 for the Si Iv and C IV resonance doublets of the 07.5 
giant ~ Persei; see also the C Iv profile of 9 Sge in the top panel of Fig. 1. 

The "softening" of the blue edge of the absorption trough is generally 
interpreted as an indicator that another, more chaotic velocity field is su- 
perimposed upon the mean expansion of the wind (Sect. 3.6). This extra 
velocity field is usually referred to as "turbulence", though it is preferable to 
think of it as a velocity dispersion that acts as an extra broadening agent for 
the material in the wind rather than turbulence in a strict hydrodynamical 
sense. Purely for convenience, it is assumed to have a Gaussian distribution 
that is characterized by its root-mean-square dispersion parameter, air turb, 
which can be added in quadrature to the Vth to produce a net broadening 
that does not require substantial changes to the SEI approach to calculating 
line profiles. The dispersion parameter Av turb may be taken to be constant 
throughout the wind (as in Groenewegen and Lamers 1989) or as an increas- 
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ing function of radius (as in Haser t995 or Haser et al. 1995; this tends to 
suppress the redshift of the emission lobe, which is overestimated for some of 
the fits presented by Groenewegen and Lamers 1989). Figure 8 illustrates the 
effect of a constant broadening on the P Cygni profile of a strong singlet, and 
shows in particular the "softening" of the blue edge of the absorption trough 
by the extra broadening, which shifts the maximum blue-shifted velocity in 
the absorption trough to v¢~ + n z2v ~urb (where n ~ 3 depends on the total 
optical depth of the line). Thus, in practice, v~ is overestimated if it is as- 
sumed to correspond to the blue edge of the trough. Since the determination 
of fl depends on the shape of the emission lobe, it will also be affected by the 
inclusion of turbulent broadening. In practice, this complication just means 
that Alv turb must also be determined simultaneously with v~ and ~ by a 
detailed fit to the observed profile. 

However, Fig. 7 also shows that there are several additional peculiari- 
ties associated with the UV P Cygni profiles of ~ Per. First, the absorption 
trough of the strong C Iv doublet exhibits an extended intervM of blackness 
(a "black trough"), something that we previously noted is impossible for a 
smooth wind. Second, the absorption trough of the unsaturated Si IV line is 
disrupted by the presence of narrow optical depth enhancements, which are 
called "discrete absorption components" (DACs). These three peculiarities - 
a soft blue edge, black troughs, and DACs - occur very commonly among 
OB stars; as discussed in Sect. 3.6, they are all evidence for the presence of 
time-dependent structure in the stellar wind of most or all early-type stars~ 
As such, they tend to undermine the picture of the stellar wind as a smooth, 
spherically symmetric, steady outflow that currently serves as the basis for 
quantitative modelling. 

3.5 Optical  Emiss ion Lines 

The main diagnostics of hot-star winds at optical wavelengths are the broad 
emission features that are found in transitions of H, He I, and He II. Ha 
is typically the strongest of these features, though lines like He I A5876 and 
He II A4686 are also important, particularly in spectra of O-type supergiants. 
A wide range of morphologies can be observed in these profiles (see Fig. 1), 
including partially filled photospheric absorption lines in the case of weak 
winds. The information about the structure of the stellar wind contained in 
them is comparable to the information contained in UV resonance lines: for 
a spherically symmetric wind, the overall strength of the emission indicates 
the amount of material, while the shape of the line profile depends on how 
the material is distributed. 

However, there are also significant differences compared to resonance lines. 
From a practical point of view, the p2 dependence of recombination lines 
means that they are not sensitive diagnostics of rarefied gas. Consequently, 
they are not well suited to determining v~, and in practice this parameter 
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must be obtained from UV resonance lines. At the same time, their com- 
parative weakness is partially offset by the relative ease with which high 
resolution, high signal-to-noise ratio (S/N) spectroscopic observations can be 
obtained from ground-based observatories. Since the shape of the line profile 
can be defined quite precisely from such high-qua!ity data, very weak, high 
velocity emission wings can be used to determine M, providing that emission 
above the continuum is present. Similarly, the height and width of the cen- 
tral part of the line profile can be used to constrain the fl-exponent of the 
velocity taw, since slower velocity laws produce stronger and narrower central 
emission peaks. Although ground-based observations of Ha (and He I A5876) 
are frequently contaminated by blending with dense concentrations of telluric 
lines (mostly due to water vapour) and sometimes by nebular emission, ef- 
fective techniques exist to remove these features from the observed spectrum 
or otherwise limit their impact on the quantitative analysis of the spectra. 

Unfortunately, the optical emission lines are a much more complicated 
case to anMyze quantitatively. On the positive side, we know from the outset 
that H and He are completely ionized until spectral types near A (for H) 
or early B (for He), so that the main stumbling block encountered for reso- 
nance lines is entirely avoided for optical emission features. However, on the 
negative side (and in contrast to the resonance lines), the excitation balance 
governing the transition of interest is not known a priori, and detailed non- 
LTE cMculations of the statistical equilibrium in the accelerating atmosphere 
are required to determine the relevant level populations. The non-LTE pop- 
ulation of level i in ion j of element k, nij~, is often expressed in terms of its 
LTE value, n~*jz, and its "departure coefficient", bijk -- n~jk/n~k,  so that 

n~j~ = b~jk n~jk = bijk no(j+l)~ n~ ¢ ~ :  (Te) , (19) 

where n0(j+l)k and n~ are the number densities of the ground state of the next 
higher ionization stage and electrons, respectively, and ¢ij~(T~) is the Saha- 
Boltzmann factor defined by Mihalas (1978; equation 5-14), which depends 
on the electron temperature (T~) and the difference in energy between state 
i and the continuum of ion j .  Analogous expressions for the populations of 
the lower and upper levels of a line transition can be substituted into (10) to 
obtain the Sobolev optical depth in the supersonic part of the wind. For the 
important case of Ha, (l, u) = (2, 3) and we obtain 

v23(r) : \ m e t /  f-~ag2~23 n2 y2 ~rr 

P ~ 4 x ~ + & ° x r  [b~2(To)-b3¢3(T~)] ~ (20) cc ~ 4 

where the subscripts j = 0 and k = 1 have been suppressed; we have noted 
that n0m is the number density of protons in the wind, which in turn is given 
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by the number density of hydrogen, nil; and we have made the approximation 
ne ~, ns + Ise n~e -- (p /mz)  (X  + IH~Y/4), where (X, Y) - (X1, X2) are the 
abundances of hydrogen and helium by mass fraction, and lz~ is the number 
of electrons released per helium ion ([~e = 2 for O and early B-type stars). 
Equation (20) emphasizes the p2 dependence of the optical depth in Ha, and 
shows the explicit dependence of recombination processes on T~ through the 
Saha-Boltzmann functions. 

The observed profile of an optical emission line typically includes signif- 
icant contributions from the quasi-static photospheric layers, the zone that 
spans the sonic point of the wind, and the supersonic region of the wind, and 
the necessity of calculating non-LTE departure coefficients over such a large 
line-forming region represents an imposing computational challenge. In par- 
ticular, the Sobolev approximation is not applicable in the deepest of these 
layers, where the velocity gradient of the expansion is small; and the artifice 
of dividing the line formation regions into a hydrostatic photosphere and a 
supersonically expanding wind (the "core-halo" approach) does not treat the 
density and velocity structure of the transition zone properly. Moreover, ra- 
diative couplings with other bound-bound transitions (e.g., the blending of 
He II ),6560 with Ha) or the complex effects of line blocking in the far UV (in 
the case of He n A4686) must also be incorporated. Puls et al. (1996) provide 
a comprehensive discussion of all these problems, with special emphasis on 
the formation of Ha profiles in the winds of early-type stars. 

These complications can be treated rigorously only in the framework of 
"unified model atmospheres", which perform complete non-LTE treatments 
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Fig. 10. Ha profile strength and morphology as a function of inclination an- 
gle for 1D (dotted) and 2D (solid) density distributions, a fixed/!)l = 6 x 10 -s 
M O yr - t ,  and vrot---250 km s -1. Left: i = 0 °. Right: i = 90 °. The abscissa 
is VLos/Voo in the reference frame centered on the star (opposite to previous 
figures); note the difference in ordinate scales. In both cases, the 2D distri- 
butions produce more emission from the same amount of wind material; the 
difference is particularly dramatic for the "pole-on" orientation. See Petrenz 
and Pals (1996) for details 

of moving atmospheres without introducing artificial distinctions between the 
photosphere and the wind (Gabler et al. 1989). Although the initial calcula- 
tions of such models were quite cumbersome, more efficient algorithms (that 
still use a variety of approximations) have been developed in the past few 
years, and several programs are now capable of performing interactive (or 
nearly interactive) modelling of optical emission lines: see, e.g., de Koter et 
al. (1993), Schaerer and Schmutz (1994), and Santolaya-Rey et al. (1997). 
Alternately, Puls et al. (1996) describe a very efficient hybrid approach that 
can be used to model line profiles of a particular wind feature for objects 
that span a limited range of spectral types by using parameterized fits to 
the radial distribution of the relevant departure coefficients, which are ob- 
tained from a grid of unified model atmospheres. Puls et al. (1996) applied 
this approach to the determination of M from Ha profiles of a large sample 
of O stars, for which the other fundamental stellar parameters (Tefr, log g, 
P~, Y, v sin i, and voo) had previously been determined by the methods of 
"quantitative spectroscopy". Figure 9 shows that very good fits to observed 
spectra can be obtained, which result in precise determinations of IV/and ~. 

However, the accuracy of these determinations depends rather strongly on 
the correctness of the assumptions of spherical symmetry and homogeneity, 
i.e., on whether the assumed distribution of material in the wind is a good 
approximation for the real distribution. Consider, e.g., two equal volumes of 
a uniform, spherically symmetric wind that are located at the same radial 
distance from the star. Let the density in one volume be half the density in 
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a corresponding volume of a uniform wind (i.e., Am1 = 0.5 Po z3V, where p0 
is the density of the smooth wind) and the density in the other be 50% more 
(Am2 = 1.5 P0 AV). The total mass in these two "clumps" is the same as 
in the corresponding volumes of the smooth wind, but since the number of 
recombinations scales with p2, the emission that arises from them is propor- 
tional to (0.52 + t.52) p02 = 2.5p~, which is 1.25 times that from the smooth 
wind. If we attempted to model the emission from the "clumped" volumes by 
assuming a smooth density distribution, we would mistakenly attribute this 
"excess" emission to a higher density. In this case, we would overestimate the 
amount of material they contain by --,12%. 

Similarly, the mass-loss rates of winds that are structured or aspherical 
will be systematically overestimated if their optical emission lines are in- 
terpreted in terms of a density distribution that is smooth and spherically 
symmetric. Both these complications are expected to occur in the winds of 
early-type stars: clumping because the line-driving mechanism is unstable 
(see, e.g., Owocki 1990), and asphericity because sufficiently rapid rotation 
concentrates the material of the wind towards a preferred plane (e.g., the 
equatorial plane in the "wind-compressed disk" [WCD] or "wind-compressed 
zone" [WCZ] model discussed by Bjorkman in his lectures (this Volume). 
Figure 10 compares the Ha line profiles computed from a smooth, 1D den- 
sity distribution with those from the 2D density distribution appropriate to 
a WCZ. The total amount of material in the wind is the same in both cases, 
but is concentrated towards the equatorial plane in the WCZ models, with 
the result that more emission is produced by the 2D models. The two pan- 
els of Fig. 10 also show that there is a further dependence on the angle at 
which the WCZ is viewed, with much stronger emission occurring when the 
star is seen "pole on" (i = 0 °) because the area the equatorial concentration 
presents to the observer is maximized in this configuration. 

Petrenz and Puls (1996) have considered the imp~t  that aspherical den- 
sity distributions have on the determination of stellar wind parameters by 
fitting synthetic profiles computed from 1D (spherically symmetric) wind 
models and 2D (WCZ) models to observed Ha profiles. Figure 11 shows that 
both models provide fits of comparable quality to the Ha profile of O4 super- 
giant ~ Puppis, which is a rapid rotator (v sin i = 210 kms -~) for its luminosity 
class. However, the wind parameters inferred from the fits are substantially 
different: the 1D model gives (M, fl) = (5.9 x 10 -s  M e yr - t ,  1.15), while the 
2D model gives (/~/, j3) = (3.4 x 10 -6 M e yr -1, 2.00) and an inclination of 
53 degrees. Thus, in this case, the assumption of spherical symmetry implies 
that M is overestimated by --~70%, and that the velocity law is faster than 
the values obtained from 2D models. Since early-type stars tend to be rapid 
rotators, WCZs are expected to occur commonly (Bjorkman and Cassinelli 
1993; Ignace et al. 1996): failure to account for them (or other structures) 
when modelling recombination lines will result in mass-loss determinations 
that are systematically overestimated. 
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Fig. 11. Fits of ID (dot-dash) and 2D (solid) density distributions to the Ha 
profile of the 04  supergiant ¢ Puppis (dotted). Figure courtesy of P. Petrenz 

3.6 T i m e - D e p e n d e n t  S t r u c t u r e  in H o t - S t a r  Winds  

In Sect. 3.4, we noted three common peculiarities in the absorption troughs 
of the P Cygni profiles of the UV resonance lines: soft btue edges, extended 
regions of blackness, and DACs. Although these deviations from the expected 
morphology are present in some of the earliest observations from the Coper- 
nicus satellite observatory (e.g., Morton 1976), they did not initially attract 
much attention. Lamers et al. (1982) noticed that DACs occurred quite com- 
monly in "snapshot" observations of a sample of OB stars obtained with 
Copernicus, a result that was soon confirmed with the International Ultravio- 
let Explorer (IUE) satellite observatory (Prinja and Howarth 1986). However, 
it was not until IUE began to provide routine monitoring capability that the 
DACs were recognized to be fundamentally a time-dependent phenomenon. 
Subsequent work has shown that the shape and strength of the blue edge of 
the absorption trough are also variable. 

The characteristic behaviour of DACs is illustrated in Fig. 12, which shows 
a series of 24 spectra of the Si ~v resonance doublet of ~ Per obtained with 
IUE by H. F. Henrichs and collaborators over ,-o2.6 days in 1988 October. The 
spectra are presented in the form of a grey-scale image where darker shades 
represent less flux (excess absorption) and lighter shades represent more flux 
with respect to the mean spectrum, which is plotted below the image. This 
format, which is often called a "dynamic spectrum" (a term borrowed from 
radio astronomers who monitor pulsars), is an ideal way to show the progres- 
sive evolution of weak features through a large number of spectra. A given 
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Fig. 12. Dynamic spectrum of the Si Iv resonance doublet of ~ Per showing 
the blueward acceleration of two DACs. Individual spectra in the time series 
have been divided by the mean in order to enhance the contrast of the varia~ 
tions. The rest positions of the components of the doublet are indicated; the 
behaviour of the DACs is the same in both components. The white strip near 
the middle of the time series denotes a significant gap in the time sampling 
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DAC first becomes visible in both components of the doublet as a broad op- 
tical depth enhancement at an intermediate velocity, but is not accompanied 
by significant variations in the emission lobe. It accelerates blueward through 
the trough and becomes narrower as it reaches its asymptotic velocity, which 
is approximately equal to voo. The time scale for the acceleration is ~ t  day 
in the case of ~ Per, which is quite slow compared with the characteristic 
flow time of its wind: ~fiow ~ P~/v~ ~ 1 hour. For ~ Per, the recurrence 
time between the appearance of strong DACs is ~ 2 days; in the time series 
illustrated in Fig. 12, a weaker component may be present in between the 
stronger ones. 

Although ~ Per is one of the most intensively studied objects (Prinja et 
al. 1987; Henrichs et al. 1994), its behaviour is certainly not unique. Howarth 
and Prinja (1989) reported the detection of DACs in 80% of the objects in 
their thorough study of the IUE "snapshot" spectra of 203 O stars; detailed 
monitoring of a subset of these objects has subsequently shown behavioural 
patterns that are qualitatively similar to the DACs of ~ Per (Kaper et al. 
1996). DACs have also been tracked in the UV spectra of B-type supergiants 
(e.g., Massa et al. 1995b), a WR star (Prinja and Smith 1992), and optical 
P Cygni profiles of O supergiants (e.g., Fullerton et al. 1992; Prinja and 
Fullerton 1994) and B hypergiants (Rivinius et al. 1997). 

The widespread occurrence of DACs implies that at least one of the as- 
sumptions of the "standard model" of hot-star winds - stationarity - is not 
valid. From (11) and (12), we see that a DAC could be produced at a par- 
ticular position in the absorption trough by enhancing Vuv in one of three 
ways: 

o locally increasing the ionization fraction, qj~(r). 
® locally increasing the density, p(r), either as a spherically symmetric shell 

or as a "clump" of arbitrary shape. 
• decreasing the velocity gradient (dr/dr) over some range of radii, thereby 

producing a "plateau" in the radial velocity law. 

When DACs can be observed in unsaturated lines with very different ioniza- 
tion energies (e.g., Si Iv and N v), they usually occur at the same velocity 
and evolve in the same way; consequently, changes in the ionization fraction 
are generally not thought to be responsible for the absorption excess (but 
see Prinja et al. 1997 for an important exception). Since variations in the 
emission lobe are rarely observed, dense shells are more or less ruled out, 
though big clumps that cover most of the stellar disk do seem to be required 
to explain the depth of some DACs (and possibly also the [presumably re- 
lated] phenomenon of "moving bumps" in the emission lines of WR stars; see 
Moffat et al. 1988). In any case, each of these methods of producing a DAC 
implies that there is some extra "structure" in the wind, and consequently 
the validity of the remaining assumptions of the "standard model" (homo- 
geneity and spherical symmetry) are also dubious. A cruciM issue is to assess 
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Fig. 13. The density and velocity distributions obtained from time-dependent 
simulations of a hot-star wind that is disrupted by the line-driven instability. 
The dashed line indicates the distribution of density and velocity from a 
comparable stationary model. From Pulse t  al. (1993) 

the impact that these time-dependent wind structures have on the determi- 
nation of mass-loss rates, which first requires that the origin and nature of 
the wind structures be clarified. 

Much of this structure is believed to be the result of a potent instability 
that is intrinsic to the line-driving mechanism; i.e., the winds of early-type 
stars are variable by virtue of the way they accelerated. The origin of this 
instability is described in very clear, graphical fashion by Owocki (1992). 
Although this instability has been recognized for a long time (e.g., Lucy 
and Solomon 1970; MacGregor et al. 1979; Carlberg 1980; Owocki and Ry- 
bicki 1984), it has only recently become possible to study its impact on the 
structure of a stellar wind by following its nonlinear growth in radiation hy- 
drodynamics simulations (Owocki et al. 1988, Feldmeier 1995). These com- 
putations are technically very challenging, because the line-driven instability 
grows most strongly on small spatial scales, and consequently the Sobolev 
approximation cannot be used to simplify the radiative transfer. The current 
generation of simulations are limited to one spatial dimension, which means 
that the structures that result from them consist of spherically symmetric 
shells. 
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Figure 13 shows a typical "snapshot" of v(r) and p(r) in a model of a 
hot-star wind at a time approximately 15 hours after basal perturbations 
in the form of a coherent photospheric sound wave were introduced. The 
deep-seated perturbations are amplified by the instability, which results in 
small amounts of gas being driven to very high velocities. This high-velocity, 
rarefied gas ultimately crashes into the more slowly moving material in front 
of it (i.e., at larger radii), and the resulting compression concentrates the 
wind into a series of dense clumps (i.e., shells in these 1D simulations). Thus, 
instead of the smooth, monotonic distributions expected from the stationary 
model, the material of the wind is inhomogeneousty redistributed into a series 
of dense shells that are separated by regions where there is very little gas. 
The velocity of the rarefied gas can exceed vo~, while the dense shells move 
at about the speed of the gas at the same radii in an unstructured wind. 

The nonmonotonic density and velocity distributions in Fig. 13 introduce 
some interesting complications to the picture of line formation that was out- 
lined in Sect. 3.2 and 3.3. Since the velocity law is no longer a smoothly 
increasing function of radius, a photon will not necessarily be free to travel 
unimpeded through the wind after it works its way through the first scatter- 
ing zone (as was the case, e.g., in the discussion of Fig. 4). Instead, it might 
encounter other clumps of material, possibly at very different positions in the 
wind but nonetheless moving with velocities "tuned" to the resonance line 
transition, which therefore permits further scattering interactions to occur. 
The possibility for multiple interactions can be easily seen from Fig. 13, since 
a horizontal line at a fixed velocity (which represents a fixed photon frequency 
in the observer's frame) intersects the computed velocity distribution at sev- 
eral widely separated radii: e.g., a line at v(r)/vrn~x (where Vm~× - v~) of 0.8 
intersects the velocity law at values of r//L~ near 2, 2.5, 3.0, and 3.4, instead 
of the single value (,.~2.3) in the ease of a smooth, monotonically expanding 
wind. 

As Lucy (1982) first realized, the net effect of these multiple interactions 
is to increase the amount of back-scattering. Consider again a horizontal 
line drawn across the velocity distribution in Fig. 13, and suppose for sim- 
plicity that scatterings only occur in the radial direction (i.e., cos¢ = 4-1 
in the notation of Fig. 4). Further suppose that at each scattering surface 
there is roughly a 50% chance that a photon will be forward-scattered and a 
50% chance that it will be back-scattered. Consequently, after n such scat- 
terings, the fraction of the original beam of continuum photons that is still 
travelling in the forward direction is (0.5) n, while the remainder have been 
back-scattered towards the star. tn fact, the situation is a bit more compli- 
cated, because photons that are back-scattered at scattering surface i can be 
back-scattered another time when they encounter scattering surface i -  1 on 
their inward journey, and so rejoin the outward propagating beam. Neverthe- 
less, the basic point is that essentially all the outward propagating photons 
will end up being back-scattered towards the star if there are a sufficiently 
large number of interaction surfaces. 
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Fig. 14. P Cygni profiles of UV resonance singtets from the structured stellar 
wind model illustrated in Fig. 13, computed for the case of (a) a moderately 
strong line and (b) a strong line. The dashed lines indicate the various com- 
ponents of the profiles for the case of the smooth wind illustrated in Fig. 3. 
DACs are visible in the absorption trough of (a); the soft blue edge extend- 
ing beyond v~o is clearly seen in (b). Changes in the shape of the blue- and 
red-shifted emission due to increased back-scattering from the multiple inter- 
actions in the nonmonotonic velocity law are also evident 

The effects of these multiple and nonlocal interactions can be incorporated 
into the Sobolev formalism in a straightforward way; see, e.g., Rybicki and 
Hummer (1978) and Pulset al. (1993). Figure 14 illustrates the changes in the 
structure of the absorption and emission components of the P Cygni profiles 
of resonance singlets that result from the nonmonotonic (but spherically sym- 
metric) distributions shown in Fig. 13. The clumpy distribution of material 
is directly visible in the absorption component of an unsaturated line, which 
shows both excesses and deficits of optical depth (with respect to the absorp- 
tion trough of a comparable smooth wind) that are due to the dense clumps 
and the rarefied regions, respectively. Since all the photons are removed from 
the absorption trough of an intrinsically strong line, these clumpy structures 
are not visible in its absorption component. However, for a strong line, the 
small amounts of rarefied gas that have been driven to velocities in excess of 
v~ have sufficient optical depth to produce a shallow, extended, and time- 
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dependent blue edge. The forward-scattered emission components of both 
moderate and strong lines are generally weaker than the components of a 
comparable smooth wind at low V~os, which is a direct consequence of the 
tendency for multiple interactions to preferentially back-scatter photons. Of 
course, an excess of back~scattering in the receding hemisphere tends to pro- 
duce more photons in the redshifted part of the emission component: this 
effect is most clearly seen for the strong line, where the detailed distribution 
of emission depends on the exact location and density contrast of the clumps. 
The net result is that the unsaturated lines exhibit absorption components 
in their absorption troughs and weaker emission lobes, while the strong lines 
exhibit shallow blue edges that extend beyond vo~, broad absorption troughs, 
and stronger emission lobes (which are at least partially due to spherically 
symmetric geometry implied by Fig. 13). 

Evidently, the wind structures that arise in a naturM way due to the 
action of the line-driven instability go a long way towards explaining the 
time-dependent peculiarities seen in P Cygni profiles: 

, DACs can be attributed to the slowly moving dense clumps. 
® soft blue edges and blue-edge variability of strong lines can be attributed to 

the presence of variable amounts of rarefied gas at velocities in excess of 
the time-averaged value of voo. Although the Gaussian velocity dispersion 
parameter z~tur b discussed in Sect. 3.4 mimics this effect, it does not 
incorporate the essential physical ingredients (i.e., strongly driven gas, 
multiple couplings due to the nonmonotonic velocity field) in a meaningful 
way, and is therefore of limited diagnostic value. Moreover, the redshift of 
the emission lobe with increasing values of AYtur b (Fig. 8) seems to be an 
artifact of the ad hoc way in which the velocity dispersion is introduced 
to the calculation of line profiles: no such shifts occur for the profiles in 
Fig. 14. 

® black troughs occur in strong lines when there are enough structures in 
the forward hemisphere of the wind to produce complete back-scattering 
over a range of VLos. The profile in Fig. 14(b) does not exhibit a black 
trough only because the wind model used to compute it (Fig. 13) does 
not have enough structure near v~ ; see, e.g., Lucy (1983) and Pulset  al. 
(1994). 

These successes are emphasized qualitatively in Fig. t5, which shows syn- 
thetic dynamic spectra computed for the full run of a radiation hydrodynam- 
ics simulation (Owocki et ah 1994). These synthetic time series show weak 
variability in the emission lobe, which is largely because the structures are as- 
sumed to be spherically symmetric; there are also some very narrow, rapidly 
evolving features that do not correspond to observed variations. Nevertheless, 
the general characteristics of DACs in unsaturated lines that accelerate over 
the course of H1 day (e.g., in the second half of the time series shown in the 
left-hand panel) and extensive blue-edge variability (e.g., in the first half of 
the time series in the right-hand panel) have many points of correspondence 
with the observed variations of ~ Per (Fig. 12). 
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Fig. 15. Dynamic spectra generated from radiation hydrodynamics simula- 
tions of the growth of the line-driven instability by Owocki et al. (1994). Left: 
DAC variability in a line of modest strength. Right: blue-edge variability in 
a strong line; DAC is also visible since this line is not saturated. Individual 
spectra in the time series have been divided by the mean in order to enhance 
the contrast 

However, despite these promising developments, the origin and nature of 
the DACs is still mysterious. Monitoring campaigns (e.g., Prinja 1988; Kaper 
et al. 1996) of many objects have linked the acceleration and recurrence of 
DACs to the projected rotational velocity of the underlying star, which sug- 
gests that the wind structures responsible for these spectroscopic features 
might ultimately be controlled by the stellar rotation rate. The recent IUE 
"MEGA Campaign" (Massa et al. 1995a) tested the strength of this connec- 
tion directly by monitoring the UV resonance lines of three early-type stars 
continuously for an unprecedented interval of ,-~16 days. In all three cases 
- most directly for ( Puppis (Howarth et al. 1995) and the B0.5 supergiant 
HD 64760 (Prinja et al. 1995) - the time scales for at least some of the wind 
variability could be tied directly to the estimated rotational period of the 
star. It is very difficult to understand how structures generated by dynamical 
processes in the wind (like the line-driven instability) can be tightly coupled 
to the stellar rotation rate, and the focus of recent work has been on find- 
ing alternative ways of generating structures that can rotationally modulate 
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the wind. The corotating interaction regions (CIRs) originally suggested by 
Mullan (1984) are among the most promising of these alternatives. Hydro- 
dynamical simulations by Cranmer and Owocki (1996) confirm that CIRs 
can produce DACs that evolve over time scales determined by the stellar ro- 
tation rate. Interestingly, they find that the velocity gradient term in ruv is 
responsible for these optical depth enhancements, not the density term. Much 
more work remains to be done in order to understand the origin of DACs, 
whether the mechanism responsible for them can also explain soft blue edges 
and black troughs independent of the line-driven instability, and what im- 
pact these time-dependent structures in the wind have on the determination 
of mass-loss rates from spectroscopic (and continuum) diagnostics. 

4 C o n t i n u u m  D i a g n o s t i c s  

At first glance, continuum measurements may not seem like a very promising 
method of determining A~/, since they contain little information about the 
velocity law and would thus appear to provide insufficient data to satisfy (1). 
In fact, flux measurements at single wavelengths in the far infrared and radio 
region can provide quite reliable estimates of M, provided that the distance 
to the star and voo are known. The velocity law can also be determined by 
measuring the flux distribution at several widely spaced wavelengths. Conse- 
quently, the overall usefulness of continuum measurements is limited not so 
much by the physics of their formation as by the spatial resolution and instru- 
mental sensitivity required to detect intrinsically weak flux levels (typically 
<< l jansky [Jy]) from distant objects at these wavelengths. 

4.1 Free-Free Emission 

The contribution of the wind to the flux at infrared and radio wavelengths 
usually comes from free-free emission (bremsstrahlung) that arises when a free 
electron moves in the Coulomb field of another charged particle - usually a 
proton or alpha particle - but does not become bound to it. The electron 
is accelerated during this interaction, which alters its hyperbolic orbit and 
results in the absorption or emission of a photon, depending on whether 
the new orbit has more or less energy than the original. The energy of such 
interactions is not quantized, and so the photons from many such interactions 
will be emitted with a continuous spectrum: since the radiation field results 
from a collisional coupling between particles that define the thermal energy 
reservoir of the material in the wind, the relevant distributions are driven 
towards their LTE values. In particular, the source function for the emitted 
spectrum is the Planck function, By (Te), and the free-free emission coefficient 
is just 

j~  = v ~  B~,(Te) . (21) 
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Derivations of the free-free absorption coefficient, a~, can be found in stan- 
dard texts (e.g., B.ybicki and Lightman 1979, Chapter 5); in cgs units, it is 
given by 

er 3.7 x I0ST - 1 / ' Z ' n e n i z ,  -3 (1 e -h~'/kT) g(~,,T) [cm -1] , (22) Ot V ~ 

where Z is the mean charge per ion; n~ and ni are the number densities 
of electrons and ions, respectively; g(v, T) is the Gaunt factor (i.e., the cor- 
rection factor needed to bring the free-free absorption cross-sections derived 
semi-classically into agreement with their quantum mechanical values); and 
all other symbols have their conventional meanings. For infrared and radio 
frequencies, hv << kT, and the correction for stimulated emission simplifies 
to (1 - e -h~/~T) ~ (hv /kT) ,  whence 

fr 1.8x lO-3T-3/2Z2nen,~-~g(v,T) [cm -1] (23) 

Consequently, at these frequencies dv~ = a~ dr o< u -~ if the weak functional 
dependence of the Gaunt factor on frequency is neglected (g o¢ ln[TI5/L,]); 
alternately, r~ o( A 2. 

This strong dependence of optical depth on wavelength provides the key 
to understanding the power of continuum methods, since - leaving aside the 
practical issues of detectability, correction for interstellar extinction, absolute 
calibration, etc. - it implies that for any M it is possible to find a wavelength 
where v~ ~ 1, i.e., where free-free emission in the wind creates an observable 
excess of flux over that expected from the stellar photosphere alone. Alter- 
nately, observations tuned to progressively longer wavelengths reach v~ ~ 1 
at successively larger radial distances from the star. The fast, low-density 
winds typical of O stars become optically thick at radio wavelengths (2-6 
cm), which originate at radii of ,.,100 R,  or more, at which point v(r) ~ voo. 
Consequently, uncertainties in the shape of the velocity law do not enter 
directly into the interpretation of the observed flux, which is sensitive only 
to the amount of material in the wind. By the same argument, though, the 
winds of O stars are still optically thin to free-free emission at IP~ wave- 
lengths, and flux measurements in the IR only provide a measure of the total 
volume emission; i.e., there is no information about the radial stratification 
of density (Abbott et al. 1984). Slower, denser winds become optically thick 
in the continuum at IR (e.g., for LBVs) or even optical wavelengths (e.g., 
WR stars). 

The observed IR and radio fluxes of ~ Puppis are compared with the flux 
levels expected from the stellar photosphere in Fig. 16. The excess emission 
due to the wind is evident for wavelengths longer than the M-band (~ 5#), 
and amounts to ---2 orders of magnitude or more in the radio region. Notice, 
however, that even though ( Pup is the nearest O star (D ..~ 430 pc) and has 
a strong stellar wind, the radio fluxes are only a few millijanskies. 
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Fig. 16. Observed and predicted continuum flux excesses for ~ Puppis as a 
function of wavelength, with data from Abbott et al. (1984), Lamers et al. 
(1984), Leitherer and Robert (1991), and Bieging et al. (1989). The solid 
line indicates the photospheric flux from a unified model atmosphere, while 
the dashed line is a fit to the flux distribution by (24). Figure courtesy of 
F. Najarro 

4.2 S p e c t r u m  of Free-Free Emiss ion  f rom a Stel lar  W i n d  

The continuum flux expected from a homogeneous, spherically symmetric, 
isothermal wind expanding with constant velocity can be obtained by directly 
integrating (3), the formal solution to the equation of radiative transfer. The 
analysis is simpler than that required to compute line profiles, since the source 
function is known from the outset to be the Planck function for a particular 
electron temperature (which is usually assumed to be constant through the 
wind) and there is no need to invoke the Sobolev approximation. Wright and 
Barlow (1975) and Panagia and Felli (1975) were the first to perform the 
integrations (which can be done analytically; see also Abbott et al. 1981 and 
Lamers and Waters 1984) to obtain the following expression for the flux from 
free-free emission in the wind: 

3'g 2/3 u2/3 
S~ = 23.2 ~ ~-~ [Jy] (24) 
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where/~/ is in M O yr -1, voo is in kms  -1, D is the distance in kpc, and u 
is in Hz; and where #~, Z, and 7 are the mean ionic weight, the root-mean 
square charge per ion, and the number of electrons per ion, respectively. 
Lamers and Leitherer (1993) provide a useful table (their Table 4) of values 
of these parameters for several assumed chemical compositions; for typical 
Pop. I abundances with complete ionization of H and He, p~ = 1.339, Z = 
1.149, and 7 = 1.149. 

Equation (24) shows that the flux from free-free emission in a stellar wind 
S~, 0¢ u2/3; if the weak frequency dependence of the Gaunt factor is included, 
the dependence becomes a bit flatter, S~ c¢ ~0.s. This is intermediate between 
the spectral distributions expected for homogeneous plasma that is optically 
thin (c¢ ~-0.1) and thick (c¢ ~2), since both extremes and the complete range 
of intermediate values contribute to the observed flux at any given frequency. 
The spectral index is positive since higher frequencies have smaller optical 
depths (r~ c¢ ~-~) and therefore probe systematically deeper layers of the 
wind, where higher densities produce comparatively more free-free emission. 

Equation (24) can be rearranged to obtain a simple expression for the 
mass-loss rate, 

M = o . 0 9 5 # i v ~  (Z2../ug(~,,T)) -1/2 D3/2S 3/4 [M O y r - ' ]  , (25) 

which emphasizes that both voo and D must be known by some other means 
in order to convert S~ to M. Otherwise, the expression appears to be quite 
model independent and straightforward to evaluate. This apparent simplicity 
is slightly misleading, since the abundances and ionization state of the wind 
need to be known in order to calculate Z and % which implies that the tem- 
perature structure must be known. The assumptions of isothermality, Pop. I 
abundances, and complete ionization are entirely adequate for O-type stars, 
but may require modifications for objects with denser winds or weaker radi- 
ation fields, particularly when recombinations occur for a dominant species, 
or in the winds of evolved objects with different chemical compositions. 

Figure 16 shows that the spectral distribution predicted by (24) fits the 
observed excesses at IR and radio wavelengths very well, which in turn con- 
firms that it originates from free-free emission in the wind. In principle, the 
flux excess at any wavelength where the wind is opaque is sufficient to deter- 
mine M via (25). When measurements at several widely spaced wavelengths 
are available, the density stratification (or, equivalently, the velocity law) can 
be probed; see, e.g., Runacres and Blomme (1996). For a distance of 435 pc 
and voo= 2200 kms -1, the fit to the flux distribution o f (  Pup in Fig. 16 gives 
/~/ = 3.1 x 10 -6 M O yr -1, which is in good agreement with the value derived 
by fitting the 2D density distribution to the Ha profile shown in Fig. 11. The 
value of fl derived from wavelength dependence of the excess is 1.4, somewhat 
"faster" than the velocity law determined by the fit of the 2D model. 
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Tab l e  2. Selected radio continuum studies 

Reference ,k (cm) Telescope ~ Objects Yield b 

Abbott et al. (1980) 6.1 VLA OBA 6/10 

Abbott et al. (1981) 6.1 VLA OB 6/10 

Bieging et al. (1982) 6.1 VLA WR 8/13 

Vall6e and Moffat (1985) 2.8 ARO, VLA O, WR 0/19 

Abbott et al. (1986) 2.0, 6.1 VLA WR 14/23 

Bie~ng et al. (1989) 2.0, 6.1, 20 VLA OBA 18/88 

Leitherer and Robert (1991) 0.13 SEST OB, WR 7 / 7  

Altenhoff eL al. (1994) 0.12 IRAM OB, WR 18/45 

Leitherer et al. (1995) 3.4, 6.2 ATCA OB, WR 10/11 

Contreras et al. (1996) 0.7, 3.5, 6 VLA OB, WR 8 / 8  

VLA - Very Large Array; ARO - Algonquin Radio Observatory; SEST - 

Swedish-ESO Submillimeter Telescope; IRAM - Instituto de Radioastronomia 

MiUimetrica, Spain; .ATCA - Australia Telescope Compact Array. 

b N(detected) / N(observed) 

4.3 M a s s - L o s s  R a t e s  f r o m  C o n t i n u u m  O b s e r v a t i o n s  

Starting with the pioneering work of Barlow and Cohen (I977), much ef- 
fort has been devoted to using continuum observations of the IR and radio 
excesses of hot stars to infer mass-loss rates and the radial structure of the 
stellar wind. Unfortunately, the winds of OB stars are typically optically thin 
at the near-IR wavelengths accessible from the ground, and consequently the 
IR excesses are small (see, e.g., Figs. 16 and 17) and subject to uncertainties 
from corrections for interstellar extinction and the absolute flux calibration. 
Even when they exist, the excesses at wavelengths where the wind is op- 
tically thin are determined by M, v(r), and the temperature stratification 
of the wind, T(r) ,  and it is impossible to disentangle the contributions of 
each of these parameters uniquely; see, e.g., Abbott  et al. (1984) for a clear 
discussion of these problems. The situation is better for objects with larger 
values of M like LBVs or WR stars, since the wind is opaque at infrared 
wavelengths. It also improves for far-IR wavelengths accessible to satellite 
observatories like the Infrared Astronomical Satellite (IRAS) mission of the 
early 1980s or, more recently, the Infrared Space Observatory (ISO). 

Since hot-star winds are opaque at radio wavelengths, measurements of 
the free-free continuum between ~1 mm and ,-~20 cm provide more useful in- 
formation about ~/. Table 2 lists a selection of continuum studies of hot stars 
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at radio wavelengths. These observations are difficult to make, since high an- 
gular resolution is required to isolate the flux from the wind (which is usually 
a point source; but see White and Becker 1982 for an important exception) 
and since the expected flux levels are small, both because of the intrinsic 
weakness of the emission and the large distances typical of early-type stars. 
Indeed, from a practical point of view, sensitivity is the biggest drawback to 
radio continuum observations. This is suggested by the low "yields" typical 
of the studies listed in Table 2, except for samples that are strongly biased 
towards extreme objects. Bieging et al. (1989) have completed the largest 
survey of OB stars to date, and it is interesting to note that while they de- 
tected 15 of the 23 sources (65%) they observed in a distance-limited sample 
(D < 2.5 kpc; d >_ -40 o), they only detected 3 more sources in their total 
sample of 88 targets, with sensitive upper limits on nondetections of ~ 0.5 
mJy. Thus, it is unlikely that significantly more stars will be detected in the 
northern hemisphere, though the advent of the Australia Telescope Compact 
Array will help to enlarge the sample by providing access to the early-type 
stars in the rich star fields of the southern skies; see, e.g., Leitherer et al. 
(1995). 

The continuum flux excesses at radio wavelengths are generally thought to 
provide the most reliable estimates of M for hot, luminous OB stars, because 
(1) when it is detectable, the observed free-free emission originates at great 
distances from the star and is unaffected by uncertainties in the shape of the 
velocity law; and (2) the emission does not depend on the detailed ioniza- 
tion or excitation equilibrium in the wind, which, in the case of O stars, can 
be assumed to be completely ionized. Thus, the main difficulties associated 
with UV resonance lines and optical emission lines are circumvented. Unfor- 
tunately, the assumption of complete ionization cannot be justified for stars 
with Teff ~ 17,000 K owing to the recombination of helium, and in practice 
a detailed model of the temperature structure of the wind must be used to 
interpret the radio continuum flux for supergiants later than .-~B2. Moreover, 
since free-free emission is a p2 process, values of )~/ determined from (25) 
are also sensitive to clumping; as in the case of optical emission lines, the 
presence of structures in a density distribution that is assumed to be smooth 
will cause ~r to be systematically overestimated. 

The most forceful argument against clumping being an important source 
of bias is that when determinations of M from Ha profile fitting and radio 
continuum measurements are both available, they agree reasonably well with 
each other on average (Lamers and Leitherer 1993; Puls et al. 1993). These 
diagnostics probe very different radial distances in the wind: Ha is formed 
predominantly in the first few stellar radii, while the "radio photosphere" is at 
tens or hundreds of stellar radii, depending on the wavelength of observation 
and the amount of material in the wind. Since Ha and free-free emission are 
sensitive to clumping in exactly the same way, their approximate equality 
implies that either the degree of clumping (i.e., volume filling factor, density 
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ratio) must be preserved over a enormous range of radii, despite the expansion 
of the wind, or significant clumping is not in fact present. The first alternative 
is thought to be unlikely (though not proven to be impossible), which implies 
that significant clumping is not present at any radius in the wind. 

However, this line of reasoning is not completely convincing, since the 
behaviour of clumped material will depend on the mechanism responsible for 
introducing the inhomogeneity in the first place. In the case of ( Puppis, e.g., 
we have already seen how structures like WCZs may be able to resolve the 
long-standing "factor of 2" discrepancy between the values of J~/determined 
from Ha (where the equatorial concentration of material is important) and 
the radio measurements (where the density distribution is more nearly sym- 
metric); yet this is one of the stars that defines the "on average" equality 
of M determined from these two diagnostics. On a more fundamental level, 
the widespread variability of hot-star winds strongly suggests that they are 
inhomogeneous on large spatial scales (Sect. 3.6). Until the nature of these 
inhomogeneities are established more firmly, the impact of wind structures 
on specific diagnostics of M cannot be assessed. 

4.4 N o n t h e r m a l  Radio  Emission 

An unanticipated difficulty with determining accurate mass-loss rates from 
radio flux measurements appeared shortly after observations with the Very 
Large Array began in earnest, when Abbott et al. (1984) recognized that 
for a minority of targets (initially just 2 stars: 9 Sagitarrii [O4: V((f))] and 
Cyg OB2 No. 9 [05 If]) the inferred values of M were an order of magni- 
tude larger than the values estimated by other methods. Subsequent multi- 
wavelength observations showed that the flux distribution for these targets 
was substantially different from that predicted by (24), with spectral indices 
a ~ 0 (where Su o¢ u a) rather than the value of +0.6 expected for free-free 
emission. Both the monochromatic flux levels and the spectral indices were 
found to be highly variable over intervals of months. These characteristics 
are illustrated for Cyg OB2 No. 9 in Fig. 17, which shows that - in complete 
contrast to the case of ( Pup illustrated in Fig. 16 - the IR and radio flux 
distributions cannot be fit simultaneously by (24), because there is too much 
radio emission. Figure 17 also emphasizes the flatness of the observed radio 
continuum and the extreme variability, which amounts to more than an order 
of magnitude at 6 cm. 

Abbott et al. (1984) recognized that this behaviour is characteristic of 
nonthermal radio emission, which contaminates (and in fact dominates) the 
free-free emission and invalidates the use of (25) to determine M. Although 
nonthermal emitters comprise only 24% of the distance-limited sample sur- 
veyed by Bieging et al. (1989), they are systematically the most bolomet- 
rically luminous stars. They are also systematically stronger radio sources 
than thermal (free-free) emitters and will therefore tend to be seen to greater 
distances. Fortunately, they can be distinguished from thermal sources by 



230 

v 

o 

A. W. Fullerton 

4 

- 2  

- 4 -  

-6 

I 0  0 

. . . . . . . .  l . . . . . . . .  I , , i  ~ . . . . .  ] . . . . . . . .  I . . . . .  I I 1 |  I I I 

J H K  LM N Q 1.3 m m  2 c m  20 c m  

III II I I I I I 

i iii: ....... 
I01 102 103 104 105 

x 

Fig. 17. Observed and predicted continuum flux excesses for Cyg OB2 No. 9 
(spectral type O5 If) as a function wavelength, with data from Abbott et 
al. (1984), Altenhoff et al. (1994), Contreras et al. (1996), Bieging et al. 
(1989), White and Becker (1983), and Phillips and Titus (1990). The solid 
line indicates the photospheric flux, while the dashed and dotted lines indicate 
the predicted flux for mass-loss rates of 4 x 10 -6 M o yr -1 (which does not 
fit the radio observations) and 4 x 10 -5 M O yr -1 (which does not fit the 
II:t observation), respectively. Variability and strong deviations from the flux 
distribution expected for free-free emission are evident at longer wavelengths. 
Figure courtesy of F. Najarro 

multiwavelength observations to determine the spectral index a, or by their 
large variations. Consequently, the complication posed by the existence of 
nonthermal sources is mostly practical, in that more observing time is re- 
quired to observe a source at several wavelengths or at several epochs in 
order to ensure that it is thermal before applying (25) to determine M. 

The origin of the nonthermal emission is unknown, but is probably due to 
synchrotron emission from electrons that are accelerated to mildly relativistic 
energies by multiple interactions with strong shocks in the presence of a weak 
stellar magnetic field (White 1985). The nonthermal source in Cyg OB2 No. 9 
has recently been resolved via very-long baseline interferometry (Phillips and 
Titus 1990), which confirms that the nonthermal component originates at or 
beyond the radius where the 20 cm free-free continuum is formed and that 
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the emitting volume is large. At the same time, however, Bieging et al. (1989) 
point out that the nonthermal fluxes at different wavelengths vary in concert, 
which is difficult to understand in terms of the chaotic, embedded shock 
model since the "free-free" photospheres at different wavelengths sample very 
different radii (r~ r c¢ ,k2). On at least one occasion, the nonthermal component 
of Cyg OB2 No. 9 faded altogether, revealing an underlying spectrum with 
a spectral index of --,0.6 that permitted Abbott et al. (1984) to derive ~r = 
1.9 × 10 -5 M o yr -1. Clearly, there is still work to be done to understand the 
origin of nonthermal radio emission and the implications that its presence 
has for the structure of hot-star winds. 

4.5 The  N e w  Frontier :  Spec t roscopy  in the  Near  and  Far I R  

The steady improvement in IR detector technology has recently produced an 
explosion of interest in studying early-type stars spectroscopically in the J, 
H, and K bands, which have central wavelengths of ~,1.25, 1.65, and 2.20#, 
respectively. These wavelengths have many advantages for studying hot stars 
in environments that are highly obscured by dust, like young star clusters 
(e.g., Hanson et al. 1993) or the Galactic Center (e.g., Najarro et al. 1994). 
These wavebands contain important lines of H (e.g., the Paschen and Brackett 
series), He I, and He II, most of which are partially formed in the stellar wind. 
They generally have a p2 character and resemble optical emission lines, except 
that they tend to be weaker because they are due to transitions between 
higher energy levels in their parent atoms. Figure 18 illustrates the quality of 
spectroscopic material that can now be obtained at near IR wavelengths by 
showing the hydrogen lines of Pfl and B7 (which fall in the J and K bands, 
respectively) of the LBV HD 160529. Both lines exhibit P Cygni profiles, the 
detailed shape and strength of which reflect the different emitting volumes 
appropriate to these transitions. 

At still longer wavelengths, IR lines have an important advantage that 
is not shared by optical emission features, which once again stems from the 
fact that continuum optical depths scale with A 2. As a result, the "effective 
photosphere" is a strong function of radius for IR wavelengths beyond the 
limit where the wind first becomes opaque. Line profiles are only formed at 
radii that are larger than the effective photosphere, and (as we have seen) they 
can be used to determine the velocity law and density structure starting from 
that point. Since the (optically thick) continua associated with progressively 
longer wavelengths form at systematicMly greater distances from the star, 
the wind lines at longer wavelengths are formed at larger velocities (i.e., 
more blue-shifted VLos). Consequently, the information provided by IR wind 
lines in different wavelength intervals is not redundant, and can be used to 
piece together the velocity and density structure of the wind - providing that 
the underlying continuum is optically thick. 

Figure 18 shows that the P/~ and B7 lines of liD 160529 are not systemat- 
ically offset from each other: despite its enormous mass-loss rate (1.3 x 10 -5 
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Fig. 18. Infrared P Cygni profiles of P/3 (in the J band) and B7 (in the K 
band) for HD 160529. These high-resolution spectra were obtained with the 
Fourier Transform Spectrometer of the Canada-France-Hawaii Telescope; the 
small undulations in the continuum are artifacts ("ringing") typical of FTS 
spectra 

M® yr -I ,  according to Leitherer et al. 1995), its J and K band continua are 
not optically thick. Instead, observations at wavelengths in the satellite IR 
are required to achieve this "infrared advantage", which even then can only 
be applied to the stars with the densest winds. Despite these caveats, this 
method promises to become an important new probe of the structure of the 
outflows from these stars. Indeed, observations of the H and He I lines in the 
2.4-45p region obtained with the short-wavelength spectrometer on board 
ISO have already provided detailed insights into the wind of the famous 
LBV P Cygni (Lamers et al. 1996). 

5 Summary  and Outlook 

It should be clear from the preceding discussion that no single diagnostic 
provides a completely reliable measurement of the mass-loss rate of an early- 
type star. The UV resonance lines are by far the best indicators of voo, and 
the shape of the profile also provides good constraints on the gradient of the 
radial velocity field of the wind. Unfortunately, the strength of UV resonance 
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lines cannot be converted to ~/ easily because of the large uncertainties in 
the ionization balance of hot-star winds, uncertainties that are in part due 
to the presence of time-dependent processes in the wind. However, once voo 
is known, continuum methods come to the fore, and measurements in the 
radio range between 1 mm and 20 cm are generally believed to provide the 
most reliable estimates of/~r. In practice, though, the weakness of the flux 
levels due to free-free emission in hot-star winds limits the applicability of 
these techniques to the nearest objects, which nevertheless play a key role by 
acting as calibrators for other techniques. 

In contrast, Ha emission profiles can now be observed with good spectral 
resolution for stars as far away as the Local Group of galaxies: Sufficiently 
strong emission permits estimates of the velocity gradient and M, and some- 
times also v~ (e.g., for late B and early A supergiants). The caveat applicable 
to these (and other) p2 diagnostics is that they are very susceptible to the 
distribution of wind material assumed by the model used to interpret them. 
In particular,/~/will be systematically overestimated if a smooth, spherically 
symmetric model is used to interpret recombination line profiles from a wind 
that is in fact asymmetric or otherwise structured. More detailed physical 
information concerning the effect of rotation on the distribution of material 
in hot-star winds and the nature of the structures responsible for their ubiq- 
uitous variability is required in order to quantify this effect. There may still 
be uncertainties as large as a factor of two lurking in the determinations of 
the mass-loss rates of early-type stars. 

Even so, the stationary properties of hot-star winds can be explained ac- 
ceptably well by the theory of line-driven winds; see, e.g., the lectures by 
Lamers (second contribution to this Volume). Consequently, it seems likely 
that in the coming years stellar wind research will begin to emphasize the 
role these outflows can play as tools to investigate astrophysical problems. For 
example, Kudritzki and his colleagues are currently developing the "Wind- 
Momentum-Luminosity Relationship", by which the stellar wind profiles ob- 
served in the luminous stars of external galaxies can be used as "standard 
candles" to determine distances out to the Fornax and Virgo Clusters; see 
Kudritzki (1997) for details of this exciting application of stellar wind theory. 
More generally, stellar winds can be used to probe astronomical situations 
that range from the formation of bow shocks, bubbles, and chimneys in the 
interstellar medium to measuring the abundance gradients in external galax- 
ies and determining the chemical composition of early generations of massive 
stars in high redshift galaxies. Observations of these phenomena represent the 
frontiers of stellar wind research; together with ongoing investigations into 
the nonstationary behaviour of hot-star winds, they are expected to provide 
further surprising insights into the physics of hot stars and their environ- 
ments. 
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Abstract. In these lectures, I discuss the theory of circumsteUar disks. There ap- 
pear to be two basic categories: Accretion disks, which are formed from infalling 
material, and outflow disks, which are formed in rotating stellar winds. Here I 
discuss the basic hydrodynamics of rotationally supported (nearly Keplerian) ac- 
cretion disks, as well as how a rotating stellar wind naturally leads to the formation 
of a dense wind-compressed equatorial disk. To observationally determine the ge- 
ometry, density, and velocity structure of these disks, we must be able to calculate 
their observable properties, so these lectures also cover radiation transport in ax- 
isymmetric geometries. Here I discuss the calculation of infrared excess emission, 
intrinsic linear polarization, and spectroscopic line profiles. 

1 I n t r o d u c t i o n  

Circumstellar disks occur around a variety of stars throughout the H-R dia- 
gram. New HST images vividly demonstrate the existence of accretion disks 
around young stellar objects (YSOs), while at the opposite evolutionary 
extreme, we see a disk in the ejecta of the luminous blue variable (LBV) 

Carinae. There is also evidence for disks around post-asymptotic giant 
branch (AGB) stars that are making their transition to the planetary nebulae 
phase. These disks are largely responsible for shaping the ejected nebula into 
the intriguing bipolar bubbles that are so prevalent in HST images of highly 
evolved stars. Even some rapidly rotating near main sequence stars (Be stars) 
show evidence for circumstellar disks. As our primary example, I will focus 
on Be stars throughout these lectures, but we should keep in mind that sim- 
ilar observations exist for virtually all disk-like systems. The differences are 
mostly ones of detail (YSOs are dusty with vet v optically thick disks, while 
AGNs have high temperature disks, which changes the ionization state and 
corresponding disk emission processes). 

So what is a Be star? Be stars are near main sequence B stars (luminosity 
classes III-IV) that have hydrogen (and sometimes Fe) emission lines in their 
optical spectra (at one time or another - -  they can be highly variable); for a 
review, see Underhill and Doazan (1982). As a class, they are rapidly rotating 
stars (about 70% of break-up) as compared to normal B stars. We are now 
certain that they have circumstellar disks because they are just now beginning 
to be resolved by optical Ha interferometry (Thorn et al. 1986, Mourard et 
al. 1989, Quirrenbach et al. 1993, 1994, 1997). Even so, it has been suspected 
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for quite some time that both Be stars and YSOs (such as T Tauri stars) are 
surrounded by circumstellar disks, even though these systems were unresolved. 

2 Disk Diagnostics 

How can we determine that unresolved stars are surrounded by rotating 
disks? Well, we have to use indirect evidence. This evidence comes principally 
from three kinds of observations: excess IR emission, intrinsic polarization 
data, and Ha line profiles. The excess IR emission indicates the presence of 
circumstellar material (see Fullerton, this Volume). Intrinsic polarization im- 
plies that this material cannot be spherically distributed (as I discuss later). 
Finally for Be stars, the Ha profiles are double-peaked. The simplest expla- 
nation for this morphology is a rotating ring (or disk) of material (Struve 
1931). The material beside the star produces emission, but the disk is also 
rotating. So on the left side of the star, that emission is blueshifted, while on 
the right it is redshifted. In front of the star, the disk material rotates perpen- 
dicularly to the line of sight, so it produces unshifted absorption. Combining 
red- and blueshifted emission with unshifted absorption produces the classic 
double-peaked emission line profile so characteristic of Be stars. Incidentally, 
this shape also implies that the disk expansion velocity (if there is any) is 
much smaller than the rotation velocity. Waters (1986) has shown that the 
Ha equivalent width is positively correlated with the IR excess, which implies 
that both the Ha and IR excess come from the same region around the star. 
So evidently, a rotating circumstellar disk can simultaneously explain the IR 
excess, intrinsic polarization, and double-peaked Ha emission lines. 

In addition to the disk, Be stars also possess a stellar wind as evidenced 
by their (weak) asymmetric blueshifted UV absorption lines, principally Si IV 
and C Iv (Snow 1981). Although these lines are not as strong as the classic 
P Cygni line profiles (they have virtually no emission and no sharp blue 
absorption edge) that indicate massive stellar winds in O stars (see Fullerton 
elsewhere in these lectures), they do indicate a substantial mass loss from 
the star; main sequence B stars are merely the much weaker siblings of the 
"live fast, die young" O stars. The terminal speed of these winds can be 
determined from the edge-velocity of the blueshifted absorption, and one finds 
terminal speeds of about 1000kms -1 (c.f. O stars, which have v~ = 2000- 
3000 km s- 1). 

This high speed wind must simultaneously exist with a slowly expanding 
disk. The usual picture that one adopts to achieve this is to assume that the 
UV lines are formed in a stellar wind that fills the polar regions, while there 
is also a dense rapidly rotating disk in the equatorial regions (see Fig. 1). Of 
course the fundamental question is what is the origin of this disk? 
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Polar Reeion 
Low Density 
Hish Velocity 
High Ionization 

Fig.  1. Standard picture of the elements required for a model of a Be star 
disk 

3 T h e o r y  o f  C i r c u m s t e l l a r  D i s k s  

There are two primary situations where we have seen that  circumstellar disks 
occur: Outflow from a rotating star, as in the Be stars, and infall (accretion), 
as in the T Tauri stars. The fundamental fluid dynamics of rotating disks 
is best illustrated by hydrostatic rotationally supported disks, so I will first 
discuss accretion disks and then proceed to outflow disks in rotating stellar 
winds. 

3.1 A c c r e t i o n  Disks  

There are two common situations that  lead to the formation of an accretion 
disk: protostellar collapse, and Roche lobe overflow in a binary star system. 
In protostellar collapse, a gravitationally bound cloud contracts under the 
influence of its self gravity. However, this cloud has some initial angular mo- 
mentum, so the fluid elements cannot fall directly onto the protostar. Instead, 
they tend to orbit around the protostar as they fall inward. This naturally 
leads to the formation of an equatorial disk. The new material that  falls onto 
the disk first hits (after passing through shocks above or below the disk sur- 
face) at large radii where it mixes with the disk. This material is subsequently 
accreted onto the star, but only after it makes its way inward through the 
disk. Similarly, the material that  overflows the Roche lobe in an evolved bi- 
nary star produces an accretion stream that falls toward the companion star. 
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Again the initial angular momentum prevents the flow from falling directly 
onto the secondary star, so it instead orbits around the star and is added 
into an accretion disk. Thus we see that the primary character of an accre- 
tion disk is that it is material that has too much angular momentum to fall 
directly onto the star; it is composed of fluid packets that  orbit the star. In 
other words, the disk velocity is nearly Keplerian. This means that  centrifugal 
force supports the disk in the radial direction, while in the vertical direction, 
it is pressure supported. 

H y d r o s t a t i c  S t r u c t u r e .  Let us now obtain the equations describing a Ke- 
plerian (hydrostatic) disk. The fluid equations are the continuity equation, 

Op 
o-T + v~(p,~) = 0, (i) 

and the momentum equation, 

O(pvi)o_h_i - - +  Vj(pvivj)  = - r i P  + pfi , (2) 

where fi is the force per unit mass (acceleration) acting on a fluid element 
with density p, pressure P,  and velocity components vi. In cylindrical coor- 
dinates (w, ¢, z) the fluid equations (1) and (2) are 

+ 1 . ,  .wpv=) + (pv~) + ~z(pV=) = 0 (3) 
Ot w aw  w 

Ov~ Ova, v~ Ov~ Ovw v~ l O P  
0--7- + v~, ~ + - - ~  + v, - -  , w 0¢ Oz r p Ow + 1'~, (4) 

Ov¢ Ov¢ v¢ Ov¢ Ov¢ v~v¢ 1 0 P  
Ot + v ~ - ~ - ~ + ~ +  - - +  0¢ v~ Oz r p ~  o¢ ~ I* , (5) 

OVz Ov~ v¢ Ov~ Ovz 1 0 P  
Ot ÷ v:"O--~w + - - ~  ÷ v~ - + f~ . (6) w 0¢ Oz p Oz 

Fluid equations like these are generally too difficult to solve directly, so 
the trick always is to identify which terms determine the major flow charac- 
teristics and which terms may be ignored. The physical situation that  we are 
trying to model is steady flow (O/Ot --~ 0), where the gas orbits the star. In 
other words, v~ = vz = 0. Let us assume that  the star dominates gravity, 
which is the only external force; i.e., assume Mdiak << M, .  Then the external 
force components are 

G M . w  
f ~  = (=,~ + ~)~/~ , (z) 

GM,  z 
L = (~2  + ~ ) ~ / ~  • (8) 
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Since gravity exerts no torques (re = 0), the model must be axisymmetric 
(0/0¢ -+ 0). Using the above restrictions, the fluid equations (3)-(6) simplify 
enormously. The only non-trivial equations are 

1 0 P _  v~ + f w  , (9) 
p 0w w 
1 0 P  
p Oz fz , (10) 

the ¢v- and z-momentum equations, respectively. These are the equations we 
must solve to determine the structure of a Keplerian disk. 

To specify the pressure we introduce the equation of state, 

P = a2p , (11) 

where a is the isothermal sound speed. Note that this equation relates the 
pressure to a velocity scale. Similarly, gravity is related to a velocity scale, 
the escape speed, V~¢ = 2 G M . / R ,  or equivalently the break-up velocity, 
V~rit = V~c/2 (the break-up velocity is the maximum stellar rotation speed 
and occurs when the rotation speed equals the orbital speed at the equatorial 
radius, R). It is very useful to rewrite the fluid equations using such a velocity 
scale, because we can easily identify which terms dominate the equations. 
Eliminating P and G M .  in (9) and (10) in favor of a 2 and Vc2rie, we find 

p 0 w  + ~ 1 + , (12) 

1 a(a2p)_ vlr tnz2 [ 
a2p Oz a2w3 1 + (13) 

The interesting thing about (12) is that typically a is a few kms -1, while 
Vcrit is a few hundred km s-1. This implies that we may ignore the pressure 
gradient term in comparison to gravity. Thus we find that the disk rotational 
velocity is 

v¢ = ½ ~ < ~ [ 1  + O(a/Vc,,t) 2] (z << w) . (14) 

This is Kepler's law, so the disk does indeed simply orbit the star like we 
initially anticipated; however, there are corrections of order the square of the 
ratio of the sound speed to critical speed, and these corrections depend on 
the height z above the equatorial plane (we will soon discover that  z/va is of 
order a / V c r i t )  • 

To determine the disk density, we must integrate the hydrostatic equilib- 
rium equation (13). For simplicity, we assume the disk is isothermal in the 
z-direction; i.e., a = a(~v). Then the disk density is 

(z << (15) 
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where P0 is the disk density at the mid-plane (z = 0), and the disk scale 
height is given by 

Z¢ = (a /v~)~  . (t6) 

Note that  H << cv, which is why we can assume the disk is thin (z <<: w). 
Interestingly, we find that the value of p0(~v) is completely undetermined. 
This is because we can choose to place an arbitrary amount of material in 
orbit at a given radius, :v; however, once we place that material in orbit, then 
the vertical structure is exponential with scale height (16). For these reasons, 
a Keplerian disk can have an arbitrary mass with an arbitrary distribution 
of its surface density, 

/? = p d z  = v / ' ~ H p o  . (17) 
O 0  

T e m p e r a t u r e  S t r u c t u r e .  The scale height is determined by the sound 
speed, a, which depends on the disk temperature, Td. So to find the scale 
height, we must first determine the temperature. Up to this point we have 
ignored the hydrodynamic energy equation. However, our disk is hydrostatic, 
so the heating and cooling terms dominate the energy equation, and the disk 
temperature is determined purely by radiative equilibrium. Let us assume 
that  the disk is optically thick - -  very much the case for protostellar disks. 
Consider a differential area element, dA, on top of the disk. The energy that  
it radiates is Remit  = O'T~, while the absorbed flux is 

Fabs = f I~ cos 01 dr2 dv 
J½ f2, 

= drier~2 O. 
de dOBv sin 2 0 cos 

J-Tr/2 
I 

= B [O. - ~s in(20. )]  , (18) 

where 0 ~ is the angle between the unit normal to the disk and the line of sight 
direction (0, ¢) toward the star, and 0. = sin -1 (R/va) is the angle subtended 
by the star. Note that  we have assumed that  the stellar intensity I~ = Bv(T . )  
and that  we have only integrated over half the solid angle subtended by the 
star, ;2./2, because the optically thick disk occults the light from below the 
disk; the only stellar radiation that  can be absorbed by the disk surface 
comes from the stellar hemisphere above the disk. In radiative equilibrium, 
f e m i t  "-" F a b s ,  SO the disk temperature is 

1/4 

= To >> R), (19) 
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where To = (2/37r)l/4T.. Substituting this power law dependence for the disk 
temperature into the scale height (16), we find that 

S = H0 (20) 

where H0 = [a(R)/Vcrit]R. Thus we see that  the latitudinal thickness of the 
disk increases slightly as we go to large radii. In principle this flaring changes 
the absorbed stellar flux (the unit normal is no longer in the z-direction), 
which effects both the disk temperature distribution and disk scale height; 
however, 9/8 is the exponent often quoted for the disk scale height, so we 
will ignore this minor inconsistency. 

Now that  we know the disk temperature distribution, we may now deter- 
mine the spectral energy distribution as well as the total energy emitted by 
the disk. For simplicity we assume that  the disk is viewed pole-on. Then the 
observed flux is given by 

JR ~° 2r~v 
F,  = B~(~ , ) - -~-d~ ,  . (2t) 

Consider an IR frequency, v, in the Rayleigh-Jeans tail of the stellar spectrum. 
At small radii, the disk is hot, so the disk is also emitting in the Rayleigh- 
Jeans limit; i.e., Vmax(w) >> v, where Vma×(w) is the frequency of the Wien 
peak of the local Planek function in the disk. However at large radii, the disk 
is cool, so the outer disk emits in the Wien limit. Since the Planck function 
decreases exponentially at large radii, the outer disk contributes essentially 
nothing to the flux integral (21). So we approximate B~(w) by 

B~(w) = { 2kTv2/c2 (w < refr, Vmax(W) >> v), (22) 
(2h~31c2)e -h~ikr -~ 0 (~  > re~, Vm~(~) << V), 

where refr is defined by Vmax (refr) = v. Using this approximation, the flux is 
given by 

2~rR 2 f"~f 2kTv 2 wd~v 
d~ Jn ce R2 

_ 

5d 2 \ c 2 ) 

The Wien peak,/]max, is proportional to the disk temperature, so Td (reff) ¢X u. 
We also know that  Td o¢ ~v -3/4, so reff ~ v -4/3. Thus we see that the shape 
of the spectral energy distribution is given by the power law 

vF~ o¢ v 4/3 (24) 

To find the total energy radiated by the disk, we integrate the emitted flux, 
Femit,  over  the disk surface, remembering that  the disk emits from both its 
top and bottom sides. Thus the disk luminosity is 

Ld = 2 (~rT~) 2~r~d~  = L . .  (25) 
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Interestingly, the disk absorbs exactly one quarter of the stellar radiation 
and re-emits it in the IR with a power law SED whose slope is 4/3. For this 
reason, optically thick disks with no internal energy generation, such as these, 
are sometimes called reprocessing disks. 

E f f ec t s  o f  V i scos i t y .  The disks that we have discussed so far are pure Ke- 
plerian disks. If the star is to actually accrete matter,  then some mechanism 
must be responsible for removing the excess angular momentum of the disk 
material; otherwise, the disk fluid elements happily orbit the star forever. 
Probably the most popular method for generating accretion is to consider 
viscous effects. 

In a Keplerian disk the orbital angular frequency [2 - v ¢ ~ / ~  ec w - 3 I  2 

constant. Consider a test fluid element orbiting the star. In a reference frame 
co-rotating with the test element, fluid elements interior to the test element 
have shorter periods, while those exterior have longer periods. Thus, there 
is a velocity shear in the ¢ direction. Consequently viscosity exerts a torque 
on the flow, which transports angular momentum and dissipates energy via 
viscous heating. The result is that  the test element loses energy and angu- 
lar momentum and drops to a lower-radius-orbit. Therefore viscosity causes 
accretion. 

The only problem is that  molecular viscosity is much too small. Steady 
flow occurs in a viscous diffusion timescale t~, = R 2 / ~  ,, where g is the kine- 
matic  viscosity. For molecular viscosity, t,, ~ 1014 yr, much longer than the 
Hubble time! Shakura and Sunyaev (1973) appealed instead to so-called eddy 
(or turbulent) viscosity, where v -,, vI .  The turbulence is composed of eddies 
(vortices) and l is the size scale of the largest eddies, while v is the "turnover" 
velocity of the eddies. The largest eddies can be at most about the size of 
the disk scale height, so we set l = H.  Unfortunately, we don' t  really know 
the velocity, but  it is reasonable to assume v < a; otherwise, the turbulence 
would be supersonic and the eddies would fragment into a series of shocks. 
Since we don' t  know the actual velocity, Shakura and Sunyaev introduced a 
parameter,  a, and supposed v = aa,  where 0 < a < 1. Thus the viscosity is 

v = a a H  . (26) 

With this value of the viscosity, the viscous diffusion timescale is reduced to 
tv ~ 106 yr, which is short enough to be dynamically interesting. Accretion 
disks that use this prescription for the viscosity are called a-disks. 

How are the fluid equations modified by the viscosity? We can still assume 
that  the disk is axisymmetric and that  the vertical structure is hydrostatic 
(vz = 0), but  the presence of accretion implies that  v~ ¢ 0. However, unless 
the accretion rates are unrealistically large, v~, ~ a. In other words, the 
accretion is subsonic. To obtain 1-d fluid equations, we integrate (3)-(6) over 
¢ and z. The ~v- and z-momentum equations are the same as before, so v¢ 
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and p are the same as in the pure Keplerian case. The continuity equation 
(3) becomes 

o = (27) 

but the accretion rate ~r = - 2 7 r ~ v = .  So the continuity equation implies 
that  the accretion rate through the disk is constant ( d M / d w  = 0). Thus the 
radial velocity component is 

M 
v= - 2 r o w s  (28) 

The remaining fluid equation is the e-momentum equation (5). This equation 
now is more complicated because viscosity exerts a torque, which is described 
by the viscous shear stress tensor, 7rij (the shear stress is the force per area 
perpendicular to dA). Including this shear stress, the e-momentum equation 
becomes 

Ova, v= v¢ 1 O v,= ~ + - (w27r=,) (29) 
w p w  2 0 w  

where 
~r=¢ = (aaH)pw O(vc/w) (30) 

Ow 
(recall that  the kinematic viscosity u = a a H ) .  Multiplying (29) by p~r 2 and 
integrating over ¢ and z, we find 

-'~b-~= (='v') = 0=,07- (31) 

where £ 7. ---- ~rrw¢ 2rr~v dz -- -3z '~a2w2Z (32) 
oo 

is the viscous torque. Note that the angular momentum per unit mass j = 
=rye, so the e-momentum equation (31) simply expresses that the change in 
the angular momentum flux is given by the gradient of the viscous torque. 
Since the continuity equation (27) implies that M is constant, we integrate 
(31) over ~ to obtain 

"7" • - - / ~ f Y c r i t V / - ~  n t- constant . (33) 

The actual value of the integration constant is a difficult question to answer 
- -  it depends on the details of how material is actually accreted onto the star, 
so I feel that  the best approach is to let its value be arbitrary. Substituting 
(32) into (33), we solve for the surface density to find 

_ Mvcr,,R1/2 (1 (34) 37raa2w3/2 

where v/-R-o0 is determined by the arbitrary integration constant in (33) and the 
sign of the integration constant determines whether the plus or minus sign is 
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used. Although I feel it is best to let R0 be arbitrary, there is a commonly used 
value. Recall that as w decreases, the disk rotation speed increases; however, 
the stellar rotation speed is less than ~crit, the Keplerian velocity at the stellar 
surface. Therefore, v¢ attains a maximum value before decreasing down to the 
stellar rotation speed (assuming a smooth transition in a viscous boundary 
layer). At the location where the orbital frequency v ¢ / w  is maximum, the 
shear stress ~r~¢ vanishes (see (30)), so 7" - 0 near the stellar surface. This 
implies that R0 ~ R and the minus sign in (34) is employed. Note that 27 --~ 0 
and v~ --+ e~ at w = R0, so the fundamental assumptions we used in deriving 
the fluid equations break down at this location. This is another reason why 
I think the value of R0 is a tricky question to answer. 

In principle the accretion rate, M, is determined by the disk surface den- 
sity, 2?, and the viscosity parameter, a. However, equation (34) tells us that 
the radial dependence of the surface density is not arbitrary; starting from 
an arbitrary distribution of material, the surface density will adopt the func- 
tional form (34) after a viscous diffusion timescale. We have now completed 
the hydrodynamic description of the accretion disk. In summary, 

V~b = Vcrit ~r'R/~;z7 , (35) 

v~, = - 5  ,, ~ri t  j l + x/-figT-~ ' 

E -  M r,tR1/2 (1 + (37) 
37rcta2w3/2 

S _](~/H), (38) 
P -  x / ~ H  e 

H = (a/v¢)w . (39) 

Spect ra l  Energy  Dis t r ibut ion .  Although we have found the velocity and 
density of the disk, we must still determine the disk temperature, which will 
govern both the spectral energy distribution of the emitted flux, and the 
pressure scale height vs. radius. Again the disk temperature is determined by 
the condition of radiative equilibrium; however, owing to the viscous energy 
dissipation within the disk, viscosity produces an additional source of disk 
heating, which depends on the accretion rate. If the accretion rate is large, 
the viscous energy dissipation dominates the absorbed stellar flux. In this 
case the disk is no longer a reprocessing disk, but is now called an active 
accretion disk. The viscous energy generation per unit volume is given by 

dE Ovi O(v¢/w) (40) 
dV = --~rik-~zk = rwCw Ow 

Integrating over z, we find that the flux to be radiated by the surface of an 
active accretion disk is 

l dE 1 [ ~  O(v¢/w) dz 
o ' T ~ -  2 dA - 2 j _  7r~¢w Ow 

o o  
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T O(v~/=) 
47r~ Ow 

_ 3 G M ,  M (1 q- v / -R-~)  (41) 
8~r ~a 

(the factor 1/2 multiplying d E / d A  arises because the disk radiates from 
both sides). Interestingly, we find that Td o¢ :v -3/4, which is the same as 
for reprocessing disks. Therefore the SEDs of active accretion disks have the 
same slope (vF~, c< v 4/3) as reprocessing disks, so one cannot distinguish 
between them merely on the basis of their slope. However, if the disk is an 
active accretion disk, then its luminosity will exceed one quarter L., the 
reprocessing result. The total accretion luminosity is 

L~cc -- (2eT 4) 2ww dw - 2 R (42) 

This is one half the potential energy change of the acereted matter. What 
happens to the other half? Recall that the kinetic energy of the orbiting 
fluid elements equals one half their potential energy change (virial theorem). 
However, if the star is not rotating at the Keplerian speed (T Tauri stars have 
rotation speeds much less than Vcrit) then there will be a large velocity shear 
between the disk and the stellar surface. Thus the excess kinetic energy will 
be dissipated in a (turbulent) boundary layer between the star and the disk. 
Since the surface area of this region is small (compared to the stellar surface 
area) and the radiated energy is comparable to (or greater than) the stellar 
luminosity, the temperature of this boundary layer will be much larger than 
the stellar effective temperature. As a result, this hot boundary layer will 
produce a UV excess. Note that both the IR and UV excesses are correlated. 
Such UV excesses are observed in YSOs and they are indeed correlated with 
the IR excess. 

I should also mention that there is an alternate scenario to the equatorial 
boundary layer that is becoming quite popular. If the star has a large dipolar 
magnetic field, then close to the stellar surface, the magnetic pressure can 
support the disk, halting the accretion and truncating the disk at some in- 
ner radius. However material cannot continue to build up at this truncation 
radius. Instead the material "climbs" upward onto the magnetic field lines. 
A portion of this material is ejected from the system, producing bipolar jets, 
while the remainder is accreted onto a high latitude ring around the magnetic 
poles. The accretion shock dissipates the kinetic energy of the accreted mat- 
ter, so there is again a high temperature region that produces a UV excess 
that is correlated with the accretion rate and IP~ excess. One new feature of 
this model is that the magnetic field permits the disk to exert a torque on the 
star via the magnetic stresses. This torque forces the star to co-rotate with 
the material at the disk truncation radius (determined by the strength of the 
stellar magnetic field). In other words, the star rotates with the Keplerian 
frequency at the disk truncation radius, which can be significantly less than 
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~crit. Thus this model naturally explains why T Tauri stars can be slowly 
rotating. 

3.2 Out f low  Disks  

As I mentioned in the introduction, there is quite substantial evidence that  
disks (equatorial density enhancements) exist within stellar winds. Although 
binarity may certainly play a role, the frequency of disks is probably too large 
for all disks to be produced by binary stars, so it is desirable to explore the 
possible mechanisms for forming disks in the winds of single stars. One of the 
best known examples of stars that  have both disks and winds are Be stars, 
which are rapidly rotating stars. Since rotation is such an obvious candidate, 
let us explore the effects that rotation can have on a stellar wind. As a starting 
point, we note that  supergiants have stronger winds than dwarfs. Primarily 
this is because the surface gravity of supergiants is much smaller than that  of 
dwarfs, so the mass flux is larger. Rotation also reduces the effective surface 
gravity, so we expect that rotation will increase the mass flux. To study the 
effects of rotation, let us investigate the mass loss through a streamtube; i.e., 
a one-dimensional model. 

1-D Effects  o f  R o t a t i o n .  In spherical polar coordinates (r, 0, ¢), the fluid 
equations are 

o-7 + ( P " % " )  + - -  
1 0 (psin Ovo) 

r sin 0 00 
1 0 

+ rsin-----O 0¢ (pvez) = 0 , 

0--7 + Or + r - ~ -  + rsin------O 0¢  ---7---  - p ~ r  + f~ ' 

Ovo Ovo vo Ovo v#, Ovo v~vo 
o-T + o--7 + + - -  r sin 0 0¢ r 

cot0v _ I O P + I o  , 
r 

Ore Ore vo Ore v¢ Ore v~v~ 
O-T+vr O r  + - - + - - - -  + - -  r O0 rs in0 0¢ r 

cot Ovov~ + 

(43) 

(44)  

pr 00 
(45) 

1 OP 

Gravity is radial (f0 = f¢ = 0), so again we assume steady axisymmetric 
flow (0/0t -+ 0, 0 /0¢  -+ 0). Since we are interested in studying a simple 1-d 
model where the rotation has non-trivial effects, let us examine the flow in 
the equatorial plane, 0 = rr/2. Under reflection about the equator, p, P,  vr, 
and v¢ are all even, while v0 is odd, so 

Ov~ Ov~ Op OP Ovo 
- -  _ 0 .  (47)  

00 - 00 - 0 0 -  00 - v ° -  Or 

pr sin 0 0¢ q- f¢ (46) 
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In the equatorial plane, the 0-momentum equation (45) is trivial, and the 
continuity, r-, and C-momentum equations (43), (44), and (46) become 

1 0 p 0v0 
~ 0~ (Pr2v~) + ~ 00  - 0 , (48) 

8v~ v2¢ 10P 
- -  - -  + f ~  , ( 4 9 )  v~ Or r p Or 

@v¢ v~v¢ 
v,  0-7-  + ~ = 0 .  (5o) 

Near the equator vo is small, so assume Ovo/O0 << (1/rp)O(pr2v,)/Or (how- 
ever, note that  this assumption is not always very good). In this case, the 
continuity equation (48) becomes O(pr2v,)/Or = 0, which implies 

pr2vr = constant = ~ , (51) 

which is the same as a spherically symmetric wind. The C-momentum equa- 
tion (50) is also an exact differential, so 

In other words the specific angular momentum Jz = rye is constant (because 
there are no torques about the z-axis in an axisymmetric model). Substituting 
(51) and (52) into the radial momentum equation (49), we obtain the wind 
equation 

dv~ 2 2 { [(dr~dr)] } VrotB a2 d in  p GM. cr~L 
v~ d~- r ------g-- - dr  r 2 ~- 4--~r2c 1 + kf  ~ . (53) [ o'epVth J 

We have assumed that the wind is isothermal (P = asp) and that  the external 
forces are gravity and the radiation force. For the radiation force, we use line 
absorption as parameterized by Castor et al. (1975, also see second contri- 
bution Lamers, this Volume). Friend and Abbott  (1986) solved this equation 
(53) numerically and obtained the following fits to their solution: 

vr = v ~  1 -  ( r > r s ) ,  (55) 

v~ = 2.2 ~ \103~mms_l  ] 1 -  Vcrit) ' (56) 

( 1 • v¢~¢ 1 - (57) 
/~ /=  ~McAK 103 kms_ 1 Vcrit ,] ' 
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where /3 = 0.8, and rs is the sonic radius. Note that as the rotation rate 
increases, the terminal speed, voo, decreases. This is because the terminal 
speed of the wind is set by the local value of the escape speed, which is 
decreased by rotation. Similarly in a radiatively driven wind, we expect the 
momentum transfer L/c ~ Mvoo. So as the terminal speed decreases, we 
expect a corresponding increase in the mass loss rate. Since at large radii 

M(e) (ss) p ( e )  _ 

(in a 1-d model), the decrease in the escape speed as a function of latitude 
implies that both these effects combine to increase the equatorial density. 
Unfortunately to be large enough to produce the dense disks that are observed 
around Be stars, the rotation rate must be quite close to the critical velocity, 
but Be stars only rotate at about 75% the critical speed. We conclude that 
some other effect is required to increase the equatorial densities of the wind. 

Recall that mass conservation tells us that the density of material flowing 
through a streamtube is inversely proportional to its area. The cross sectional 
area of the streamtube depends on the location of the adjacent streamlines, 
so in addition to the mass loss rate and terminal speed, the geometry of the 
streamlines also plays a role in determining the density. 

What do the equatorial streamlines look like? We can obtain a differential 
equation for the position by dividing v~ by v~, 

- - (59) 
dr ÷ r v r  

Integrating outward from the sonic radius, 

- - =  i -  , (60) 
R 

the differential equation (59) has the solution 

[( 1 ¢ -- (1 - j3)voo I - R )  \~~-~ ] J (61) 

Initially the streamline is almost tangent to the stellar surface. As the fluid 
travels (initially sideways), it begins to be accelerated outward, so the stream- 
line deflects outward in the radial direction (see Fig. 2). As r --~ c~, ¢ --+ Cmax, 
where 

Cmax-- ( 1 -  ~)vco 1 -  \ ~ - ]  J (62) 

Thus the streamline eventually becomes purely radial with a maximum az- 
imuthal deflection ¢max. 

We have now determined the shape of the streamlines in a 1-d model in 
the equatorial plane, but up to this point we have ignored the 2-d (latitudinal) 
effects on the streamline locations. 
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Fig. 2. Equatorial Streamlines. Shown are the streamlines from the Friend 
and Abbott (1986) model of the equatorial outflow for two different stel- 
lar rotation rates. Note that for slow rotation (left panel) the streamline is 
rapidly accelerated outward, while for rapid rotation rates (right panel) the 
streamline orbits farther around the star before being accelerated outward 

2-D Effects of Rota t ion .  In a rotating two-dimensional axisymmetric 
model, the streamlines do not spiral outward on surfaces (cones) of con- 
stant latitude, as is often assumed. Instead they bend toward the equator 
due to the centrifugal and Coriolis forces. To determine the structure of the 
wind, we must solve the fluid equations (1) and (2) and find the location 
of the resulting streamlines. These equations are quite difficult; however, an 
enormous simplification occurs in the supersonic portion of the flow. 

Supersonic  Limit .  Consider the forces acting on the fluid. For an axisym- 
metric geometry, the pressure gradient only has r- and 0-components. Al- 
though the 0-component is large at the stellar surface (to enforce hydrostatic 
equilibrium), it drops rapidly beyond the sonic radius, rs. The other forces 
are gravity and radiation, which are central forces. Thus, beyond the sonic 
point, there are no external torques, so both the 0- and C-components of the 
velocity are determined by angular momentum conservation. This implies 
that va and v¢ are O(VrotR/r). Typically for an early-type star, the rotation 
speed, Vrot, is highly supersonic. So, as long as r >> rs and r ~ R, all three 
velocity components are highly supersonic. 

Note that the left hand side of the momentum equation (2) is O(v2), but 
the pressure gradient on the right hand side is O(a2). As long as all three 
velocity components vr, v0, v¢ >> a, we may completely ignore the pressure 
gradient. If there are no pressure forces, there are no interactions between the 
individual fluid elements. This implies that the streamlines are free particle 
trajectories corresponding to the external forces. 
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Fig.  3. Orientation of the orbital plane for a streamline originating at a polar 
angle 00. The streamline labeled (a) is a case with a high rotation rate and the 
streamline labeled (b) denotes a low rotation rate. (Figure from Bjorkman 
and Cassinelli 1993) 

O r b i t a l  P l a n e .  Much can be learned about the location of the streamline 
by recalling that  gravity and radiation are central forces. Therefore, the total 
angular momentum is constant along a streamline. So just like a Keplerian 
orbit, the streamline lies in an orbital plane, containing the center of the star, 
the initial location, and velocity vector, V0 (see Fig. 3). To find the streamline 
trajectories, we simply rotate the 1-d solution in the equatorial plane (Fig. 2) 
up to the initial latitude of the streamline and adjust the rotation velocity 
by Vrot --+ l/rot sin ~0. 

Figure 3 shows two trajectories labeled (a) and (b), that  correspond to 
different initial conditions. Trajectory (a) has a slow initial acceleration and 
occurs when there is a large rotation rate. Trajectory (b) has a fast initial 
acceleration and occurs when there is a slow rotation rate. Note that  as 
trajectory (a) orbits around the star, it has a decreasing altitude, z, and 
eventually crosses the equator. Conversely, trajectory (b) deflects outward 
and has an increasing altitude. 

The curvature of the streamline depends on the forces and is most easily 
understood in the non-rotating reference frame. In this frame, there are only 
two forces, and each is in the radial direction; gravity points inward, and 
the radiation force points outward. To produce a net force with a negative z- 
component, we must have Fgrav > Fred. Thus, the equator-crossing trajectory 
(a) corresponds to initial conditions where the force of gravity exceeds the 
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radiation force, and trajectory (b) occurs when the radiation force is larger 
than gravity. 

Forces  in R o t a t i n g  W i n d s .  The location where the radiation force ex- 
ceeds gravity depends on the subtle interaction of the radiation force with 
the velocity gradient, dye~dr. In the orbital plane, the r-component of the 
momentum equation is 

dvr = a 2 dp 
Vr dr . . . .  p dr  + Frad Fgr~v + v¢2 +r ve~ (63) 

The last term on the right hand side is the centrifugal force, so the velocity 
gradient, dye~dr, is determined in the rotating reference frame. To maintain 
an outward flow, a line-driven wind must constantly accelerate to higher 
velocities, so that there is always a supply of unattenuated stellar photons. 
Since the radiation force depends on dye~dr (see (53)), the velocity adjusts 
until the radiation force maintains a positive dye/dr.  

Figure 4 compares the forces for rotating and non-rotating winds. In the 
non-rotating case, [2 = Yrot/Ycri t  -~ O, thermal pressure supports the flow 
out to the sonic radius, rs ~, 1.01R. Beyond the sonic point, the thermal 
pressure support is negligible; therefore, the radiation force must increase 
until it is larger than gravity (so that  dvr /dr  is positive). Note that  the 
radiation force exceeds gravity at all locations beyond the sonic point. In 
the rapidly rotating case, ~2 = 0.75, most of the support is instead from 
the centrifugal force. When the thermal pressure support is lost at the sonic 
point, the radiation force again increases to supply the missing force, but 
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Fig. 5. Diagram of the stellar wind and wind-compressed disk. Shown are 
the wind streamlines, which fall toward the equator. The expanded view 
shows the standing shocks that form above and below the disk. (Figure from 
Bjorkman and Cassinelli 1993) 

because of the large centrifugal support, the required amount is smaller than 
gravity. The centrifugal support falls as 1/r 3 (much slower than the thermal 
pressure) and it is not until the centrifugal support is lost that the radiation 
force finally exceeds gravity at about 3R. Thus there is a region between the 
sonic point and about 3R where gravity is larger than the radiation force. 
Within this region, the streamlines fall toward the equator, and if this region 
is large enough, the streamlines attempt to cross the equator. 

S t reamlines .  To build a model for the entire two-dimensional structure 
of the wind, we calculate the shape of the streamlines as a function of ini- 
tial latitude on the surface of the star. If the star is not rotating, then the 
streamlines are entirely in the radial direction. On the other hand, if the star 
is rotating, then the streamlines fall toward the equator between the sonic 
point and the location where the radiation force exceeds gravity (see Fig. 5). 
Near the pole, the rotation velocity is small, so the streamlines are radial. 
But for streamlines closer to the equator, the rotation velocity is higher, the 
region where gravity exceeds the radiation force is larger, and the streamlines 
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Fig. 6. Time-dependent numerical simulation of the wind-compressed disk 
for a B2.5V star with Vrot = 350 kms -1. Shown (from left to right) are the 
density and the r-, 0-, and C-velocity components. (Figure from Owocki et 
al. 1994) 

fall farther before turning in the radial direction. If the equatorial rotation 
rate of the star, Vrot, is above a threshold value, Vth, then for latitudes less 
than A00, the streamlines attempt to cross the equator (see Fig. 5). 

When the streamlines cross the equator, they collide with the streamlines 
from the opposite hemisphere of the star. Streamlines cannot cross because 
the density diverges. Instead, the increase in density causes a large pressure 
gradient, and since the flow velocity (perpendicular to the equator) is super- 
sonic, a pair of shocks form above and below the equator. The pressure at the 
equator must balance the ram pressure of the wind, so between the shocks 
there is a dense equatorial wind-compressed disk. 

3.3 Time-Dependent Hydrodynamics 

This Wind-Compressed Disk (WCD) model, which was developed by Bjork- 
man and Cassinelli (1993, hereafter BC), is only valid in the supersonic region 
of the flow, and thus requires initial conditions at the sonic point. To obtain 
these initial conditions, BC assumed that the subsonic expansion is in the 
radial direction; i.e., 0 is constant and v0 - 0 for r < r~. Another approx- 
imation BC employed was to assume a shape for the WCD shock surface, 
because the actual shape depends on the detailed dynamics of the disk. 
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To assess the validity of the WCD approximations and to examine in detail 
the dynamics of the disk, Owocki et al. (1994, hereafter OCB) developed a 
2-d time-dependent numerical simulation of the wind from a rotating star. 
Aside from properly including shocks and gas pressure, OCB also included an 
oblate lower boundary condition that accounts for the rotational distortion 
of the star. Starting with a wind that is initially spherically symmetric, OCB 
find that, after about 50000 sec, the time-dependent solution relaxes to a 
steady-state solution with a thin equatorial disk (see Fig. 6). 

The qualitative appearance of the disk agrees quite well with that pre- 
dicted by BC. The thickness of the disk is about 3 o in latitude (BC predicted 
0?5), and the disk density is about two orders of magnitude higher than the 
density at the pole, which is somewhat lower than predicted by BC. Interest- 
ingly, a weak disk persists even at rotation rates below the rotation threshold 
predicted by BC. 

There are two fundamental differences between OCB's results and the 
predictions by BC. First, the disk is not detached from the stellar surface 
(compare Figs. 5 and 6). Second, there is a stagnation point in the disk. 
Exterior to the stagnation point, the disk material flows outward. Interior to 
the stagnation point, the material falls back onto the stellar surface. Thus 
there is simultaneous outflow and infall in the disk. 

R o t a t i o n  Threshold .  The disk forms only when the star is rotating faster 
than the equator-crossing threshold, Vth. This disk formation threshold de- 
pends on the ratio of the terminal speed of the wind to escape speed of the 
star, v~/Vesc. This is because a faster wind implies a larger radiative acceler- 
ation, which decreases the size of the region where the streamlines fall toward 
the equator. To compensate, the stellar rotation rate must be increased. Thus 
the disk formation threshold increases with increasing vo./Vesc. 

Figure 7 shows both the observed and theoretical values of the wind ter- 
minal speed ratio, v~/Ves¢, as a function of main-sequence spectral type. The 
observed and theoretical values mostly agree for O stars; however, for late B 
stars, the observed terminal speeds are significantly lower than the theoret- 
ical terminal speeds. The observed terminal speeds of B stars are estimated 
from the edge-velocities of the C Iv and Si Iv line profiles (K.S. Bjorkman 
1989). Typically these profiles are quite weak, so it is quite likely that the 
observed B star terminal speeds are systematically underestimated. On the 
other hand, there are many uncertainties in the theoretical calculations. At 
this time, it is unclear which terminal speeds are more reliable for B stars. 

Using the terminal speeds shown in Fig. 7, we find the disk formation 
threshold, shown in Fig. 8, as a function of spectral type. Assuming that the 
winds of B stars are radiatively-driven, Fig. 8 indicates that any B star that 
rotates faster than the rotation threshold will have a thin equatorial disk, 
which could be responsible for the Be phenomena. Note that the rotation 
threshold has a minimum at B2, if one uses the theoretical terminal speeds. 
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This min imum may qualitatively explain the frequency distribution of Be 
stars; i.e., why Be stars are most  common at a spectral type of B2. 

S h o c k  T e m p e r a t u r e  a n d  D i s k  D e n s i t y .  To investigate more quanti ta-  
tively whether or not the WCD model can explain the Be phenomena,  we 
must  determine the properties of the disk. For a concrete example,  we con- 
sider a B2 V star with a mass-loss rate of 10 -9 M O yr -1 and a terminal  speed 
ratio voo/Ves¢ = 1. The WCD shock temperature  is determined by the shock 
velocity, which is approximately the ~-component of the velocity of the wind 
when it enters the disk. The shock temperature,  shown in Fig. 9, is typically 
a few 105 K, which is large enough to produce C TV and Si Iv by collisional 
ionization. Thus the disk is bounded above and below by a thin superioniza- 
tion layer. In addition to the shocks that  produce the disk, there is also an 
accretion shock (due to the disk inflow) in the equator at the stellar surface. 
The disk infall velocities are typically a few hundred km s -1 , so the accretion 
shock can have temperatures  of order 106 K and may produce soft X-rays. 
Note tha t  the tempera ture  due to the accretion shock is not shown in Fig. 9. 
Since all of these shocks can produce superionization, they may be respon- 
sible for the excess superionization of Be stars compared to normal  B stars 
(Grady et al. 1987, 1989). 

The disk density may  be est imated by equating the gas pressure in the 
disk with the ram pressure of the wind entering the disk. Assuming that  the 
shocked material  that  enters the disk cools to the same radiative equilibrium 
tempera ture  as the stellar wind (the shock cooling length is thinner than 
the disk), we find /)disk ' ~  Pwind[1  -[- (vo/a)2], where the right hand side is 
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evaluated in the wind just  prior to the shock that  forms the disk. The disk 
density is shown in Fig. 10. Note that  the disk density is p ,~ p o ( r / R -  1) -~ ,  
where P0 ~ 10 -13 g c m  -3 and n ,-~ 3. 

4 R a d i a t i o n  T r a n s f e r  in  A x i s y m m e t r i c  S y s t e m s  

Now tha t  we have developed a theory of circumstellar disk formation,  we 
would like to be able to test that  theory against observations. To do so, 
we must  be able to calculate observational properties of our models. Un- 
fortunately our models are not spherically symmetric,  so we are faced with 
the task of performing radiation transfer in an axisymmetric  geometry. True 
radiation transfer models (those that  include scattering, line transfer, and 
non-LTE opacities) in two and three dimensions are still in their infancy, and 
most  employ several practical approximations to make the problem compu- 
tat ionally tractable.  However, before discussing some of these methods,  let 
me suppose tha t  one already knows the value of the source function. In this 
situation, one can directly integrate the transfer equation to find the specific 
intensity, Iv. Then to determine the observed flux, we integrate the emergent 
i n t e n s i t y ,  I emerg, over the surface area of the sky; i.e., 

t emer_ dA /?v : /emergd~'2 = J I~ ~-W 

= -~ I~m~gqdq da , (64) 

where q and a are the impact  parameter  and position angle of the line of 
sight (note that  q is measured in stellar radii), and d is the distance to 
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the star. The rotation axis is inclined by an angle i with respect to the 
observer's line of sight, so the coordinate transformations from the line of 
sight cylindrical coordinates (q, a, z) to the observer's Cartesian coordinates 
(z, y, z) and stellar Cartesian coordinates (z. ,  y,, z.) are given by 

z = q cos a , (65) 

y = q sin a , (66) 

z ,  = - q  sin a cos i + z sin i , (67) 

y, = qcosa  , (68) 

z, = q sin a sin i + z cos i . (69) 

Again we are using dimensionless coordinates (in units of stellar radii) with 
the observer at z = co, and we have oriented the observer's y-axis along the 
projected stellar rotation axis. 

We must integrate the transfer equation along the line of sight to evaluate 
the emergent intensity. Recall the formal solution to the transfer equation, 
which implies 

f0 ~ ' "  { e - r ~ " I :  (q < 1), (70) Ivemers = e-r~Svdrv + 0 (q > 1), 

/2 = - , vdz' . ( 7 1 )  

Computationally it is very inefficient to re-evaluate (71) for every point in the 
integrand of (70), so it is much more efficient to solve the transfer equation 
by recasting (70) and (71) as the following pair of simultaneous first order 
differential equations: 

dry 
- -  = - ' ~ v  , ( 7 2 )  
dz 
dIv 

.. = - e - ~ t c v S v  , (73) 
dz 

with the boundary conditions rv = Iv = 0 at z = o¢. Note that  Iv (z) is not 
the value of the specific intensity at z; it is the contribution to the emergent 
intensity between z and co. We can avoid evaluating the exponential in (73) 
if we define an attenuation factor tv =- e -r~ , then (72) and (73) become 

dry 
=  vtv , ( 7 4 )  

dz 
d~v ( d r y )  
dz - k-y/z ] Sv , (75) 

with boundary conditions tv = 1 and Iv = 0 at z = oo. Some lines of sight 
intersect the star while others do not, so (74) and (75) are to be integrated 
f r o m  z = o o  t o  z ---- Zmin ,  where 

Zmin = _ (q  > 1) .  
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The emergent intensity is then given by 

ivemerg /v (Zmin)jr { ~v (Zmia) 1~, (q < 1), 
(q > 1). (77) 

Note that the differential equations (74) and (75) are in the form of an 
initial value problem, so we can use a simultaneous first order ODE numerical 
integrator to solve them. I highly recommend the Bulirsch-Stoer integrator 
in Numerical Recipes (Press et al. 1986). Their algorithm uses an adaptive 
step size, where the step size is automatically adjusted to maintain a given 
error tolerance. A problem that one frequently encounters when integrating 
the transfer equation in disk geometries is that the opacity varies over several 
orders of magnitude and can be highly peaked in the vicinity of the disk. This 
is the primary reason I prefer to use an adaptive step size differential equation 
integrator instead of the more usual Feautrier method. The Feautrier method 
solves the transfer equation using a two point boundary value (2nd order) 
ODE. Consequently, the solution algorithm usually uses a finite difference 
scheme to solve the transfer equation. One problem with such finite differ- 
ence methods is how to set the grid size to achieve a given error tolerance. 
In practice one usually just doubles the number of points until the answer 
converges. However, unless one has some physical guidance for how to set the 
relative sizes of the grid cells (such as choosing the cell size to obtain constant 
optical depth spacing - -  a difficult problem in multiple dimensions), often 
times some grid cells have very small errors (i.e., the grid is oversampled in 
these regions) while the errors are dominated by just a few badly behaved 
undersampled grid cells. In contrast, adaptive mesh integrators automatically 
adjust the step size locally and automatically avoid oversampling while not 
undersampling the highly peaked opacity in the disk. 

4.1 I R  Excess Emiss ion  

An application where we know the source function a pr!ori is calculating the 
IR flux. The Ift flux is dominated by free-free emission from the disk. Free- 
free emission is produced by free electrons that have a Maxwellian velocity 
distribution, so it is an LTE process; i.e., S~ = B~, where B~ is the local 
value of the Planck function in the wind. In the IR (Rayleigh-Jeans limit), 
the free-free opacity 

~,~ c¢ v - ~ p  2 . (78) 

We can gain much insight into the behavior of the IR excess by studying 
a simple isothermal model, B~ = constant = B~. For a simple axisymmetric 
disk-like density distribution, we adopt the parameterization 

p = po sinm e (-R-)" (79) 
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The exponent n determines the radial distribution of material, m controls 
the latitudinal thickness of the disk, A~ = cos-1(1/2)1/m, and P0 sets the 
density scale or equivalently the optical depth of the envelope. 

Since the envelope is isothermal, the solution to the transfer equation (70) 
is 

f (q < 1), i emerg 
= [1 - (q > 1) ,  

{ B ~  (q < qe~), 
(s0) 

'~ 0 (q > qeff), 

where r p  ~x = rv(Zmin).  Interior to the effective impact parameter, qefr, the 
wind is optically thick (so the intensity equals the source function), while 
exterior to the effective impact parameter, the wind is optically thin and 
L, ~ T~XB~ --+ 0. For a density p ~ r -'~ sin r~ tg, the value of qefr is determined 
by the condition (Bjorkman 1992) 

CaX(qefr, c~) -- F \~-~-~--~]j = 0.37 (n = 3). 

Note that  the effective impact parameter is a function of position angle, a. 
This contour is a line of constant column density through the envelope and 
is the effective transition radius between optically thick and thin, so it also 
defines the projected area of the effective photosphere. Since the optical depth 
is constant on this line, it is also an intensity isophot. Substituting (80) into 
(64), the observed flux is 

I' F~, = St, lq~ff da = BL, Aeff/d 2 (82) 
2 

which is the product of the source function and the effective area, Aeff. As 
a function of wavelength, the opacity increases ( ~  c¢ AS), so the effective 
impact parameter increases (qefr cc v-2/(2'~-1)) as does the effective area. We 
now see why there is an I1~ excess; in the IR the effective photospheric area 
is larger than the star. Since the flux is determined by the apparent solid 
angle, A~fr/d ~, which is much larger in the IR, there is a flux excess. Using 
the frequency dependence of qee~, we find that  the slope of the spectral energy 
distribution is given by 

F,, oc B~,qe 2 cc v ( ~ )  . (83) 

Thus we see that  the slope of the free-free continuum determines the radial 
density exponent, n. Using IRAS data, Waters et al. (1987) measured the 
slope of the IR free-free continuum for a large sample of Be stars. They 
found that  n usually lies in the range 2-3.5. 

In principle the amplitude of the IR excess provides information about 
2/(2a-1) Unfortunately the the density of the envelope, P0, because qeff oc y0 
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amplitude of the IR flux is also geometry-dependent. If we increase the open- 
ing angle of the disk, A~ (i.e., m), the column density through the disk also 
increases, which implies that qeer will increase. Therefore increasing the disk 
opening angle will increase the IR flux. Similarly if we change the stellar in- 
clination angle, the effective area changes. The smallest effective area occurs 
edge-on, while the largest occurs pole-on. Therefore the IR flux decreases 
as the inclination angle increases. Combining all these effects, the IR flux is 
given by 

4 4n--6 
F Ia  = C(i,  rn)p!'"-~ ) u ( ~ - r )  , (84) 

where C is a geometry-dependent constant (it also depends on the disk tem- 
perature, unless n = 2). 

In summary, the slope of the free-free continuum determines the radial 
exponent, n, but the amplitude of the IR excess only determines the den- 
sity, p0, if the geometry (i, m) and temperature are known. Consequently 
we need another observational quantity that will help us determine the ge- 
ometry. Polarization is dependent on the scattering geometry, so polarization 
measurements can help determine the geometry of the circumstellar envelope. 

4.2 I n t r i n s i c  P o l a r i z a t i o n  

Since photons are massless spin-one particles, they are polarized with two 
helicity states. However, an ensemble of photons (uncorrelated sum) is only 
partially polarized. The polarization state is described by a Stokes vector 
S = (I, Q, U, V), which is equivalent to a density matrix description in quan- 
tum mechanics (see Landau and Lifshitz 1975, §50, and Berestetskii et al. 
197t, §8). To qualitatively understand the degree of polarization, consider 
the classic observation of linearly polarized light through a Polaroid filter. If 
we rotate the filter to find the direction of maximum light transmission, then 
the degree of polarization is given by 

]'max - -  Imin (85)  
P - fmax + Imin ' 

where Imin is the transmitted intensity in the direction perpendicular to the 
direction of maximum transmission. Qualitatively, the degree of polarization 
is the difference between the intensity parallel and perpendicular to some 
reference direction. 

There are several polarizing mechanisms that have astrophysical impor- 
tance, such as synchrotron emission, dichroic absorption, and electron or dust 
scattering. Synchrotron emission occurs when electrons spiral around mag- 
netic field lines, so they radiate light that is polarized perpendicular to the 
B field. Dichroic absorption occurs when spinning cylindrical dust grains are 
aligned by the magnetic field in the interstellar medium. The spin axis is 
parallel to the magnetic field, but perpendicular to the long axis of the grain 
(so the cylindrical grain sweeps out a disk-shaped region as it spins around 
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the magnetic field). The attenuation cross section for light polarized paral- 
lel to the long axis is larger than for light polarized perpendicular to the 
long axis, so as the light is extincted during its passage through the inter- 
stellar medium, it is more extincted parallel to the grain's long axis than 
perpendicular. Therefore, the light becomes polarized perpendicular to the 
spinning grain and parallel to the magnetic field. Finally for circumstellar en- 
velopes, the polarizing mechanism is scattering by dust (YSOs) or electrons 
(hot stars). 

When light scatters, it becomes linearly polarized perpendicular to the 
scattering plane. The degree of polarization depends on the scattering an- 
gle (and scattering mechanism) - -  90 ° Rayleigh scattering is 100% polarized 
while forward and backward scattering is unpolarized. If we consider integrat- 
ing along a line of sight passing by the star, the orientation of the scattering 
plane is constant for all points on that line of sight. Therefore the partial po- 
larization contributions may be summed and the emergent light is partially 
polarized perpendicular to the radius vector of the line of sight (projected on 
the sky). If the envelope is spherically symmetric, for every line of sight there 
is another line of sight (at the same impact parameter) at a position angle 90 ° 
away that is polarized perpendicular to the original line of sight. So when you 
integrate over the envelope, the total polarization sums to zero. Therefore, 
unresolved spherical sources must be unpolarized. If any intrinsic polariza- 
tion is observed (after removing any interstellar polarization due to dichroic 
absorption), then the source cannot be a spherically symmetric wind. On the 
other hand, if a circumstellar disk is present, more light is scattered by the 
disk, so the net polarization will be perpendicular to the plane of the disk. 
Similarly, the scattering from bi-polar jets will be polarized perpendicular to 
the jet axis. 

Opt ica l ly  Thin.  To determine the geometry dependence of the polarization 
produced by circumstellar disks, it is useful to first calculate the polarization 
in the optically thin limit where one can obtain analytic expressions for the 
polarization. In the optically thin limit, the polarization is produced by singly 
scattered stellar photons, so the fundamental scaling of the polarization is 
given by 

F oat_  ;o t dn' 
P "~ F .  ~ ~rB~,R 2 , (86) 

where F~. cat and sc~t • " FII are the scattered fluxes with polarization perpendic- 
ular and parallel to the disk, respectively, ne is the electron number density 
and (dq/d£2) is the differential cross section for electron scattering. Note that 
the scattered (polarized) flux is proportional to a volume integral of the elec- 
tron density times a geometric factor that accounts for the scattering angles. 
Fundamentally the polarization depends on the total number of scatterers 
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as well as a geometry-dependent factor. If we increase the envelope density, 
the polarization increases linearly with the mass of the envelope. Including 
all the scattering geometry-dependent factors (see Bjorkman and Bjorkman 
1994, or Cassinelli et al. 1987 for details), the polarization of an axisymmetric 
electron distribution is given by 

P 3trT ~ [  3# ~) } sin 2 i 
- 16~rB~,R 2 [,J d V n ~ ( 3 K -  J ) ( 1 -  

"~ vest sin 2 i , (87) 

where J and K are the usual intensity moments,/~ = cos 8, 1"e, = f ~  ne(rW dr 
is the radial electron scattering optical depth, ~T is the Thomson cross sec- 
tion, and 7 is a factor that depends on the shape of the envelope (see Brown 
and McLean 1977). 

We see that the polarization depends on three factors. First, it increases 
linearly with the electron scattering optical depth (or envelope mass). Sec- 
ond, it depends on the inclination (or viewing) angle. Pole-on there is no 
polarization because the envelope is circularly symmetric on the sky (so the 
net polarization sums to zero). It then increases monotonically to its max- 
imum when viewed edge-on. Third, it also depends on the overall shape of 
the envelope (whether it is very flattened or almost spherical). Holding the 
density (or rc,) constant, if we start with a thin disk and increase the opening 
angle of the disk, the polarization initially rises (because the volume of the 
disk increases, the total number of scatterers increases, and all the scatterers 
produce polarization perpendicular to the disk). The polarization attains a 
maximum value when the opening angle is about 300 and decreases back to 
zero as the envelope becomes spherically symmetric and the opening angle 
approaches 900 (because the scattering in the polar region produces polar- 
ization perpendicular to the scattering in the disk, it cancels the equatorial 
polarization and drives the net polarization back to zero). Owing to this non- 
monotonic behavior of the polarization versus opening angle, for any given 
polarization level, there will be two possible disk opening angles that could 
produce the observed polarization. 

Opt ica l ly  Thick.  Unfortunately, the circumstellar disks around Be stars 
are optically thick, so the previous discussion about how the polarization 
depends on the disk geometry is only a qualitative guide. When the disk is 
optically thick, multiple scattering becomes important, so one must begin 
to perform true radiation transfer (because the source functions depend on 
both the stellar and the scattered radiation field). Various methods have 
been developed for radiation transfer in multiple dimensions, such as the 
diffusion approximation, the method of discrete ordinates, and Monte Carlo 
simulation. The diffusion approximation is only valid at very large optical 
depth, so it is really a stellar interiors approximation. However, it can be 
extended moderately easily to three dimensions, and it has been successfully 
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employed in modeling the very optically thick envelopes of YSOs. The method 
of discrete ordinates treats the transfer equation as a PDE in six dimensional 
space (three spatial coordinates, two angular coordinates, and potentially a 
frequency coordinate). This method has some numerical difficulties that can 
make it difficult to implement. For example the specific intensity can become 
negative and it can also become quite highly peaked in the radial direction 
once the envelope becomes optically thin at large radii. This forward peaking 
of the radiation field can require a large number of angular grid cells. The 
last method is Monte Carlo simulation, which tracks the paths of individual 
photon packets as they travel through the envelope. 

Historically, the Monte Carlo method has not been a very popular tech- 
nique in stellar atmospheres. Most likely this is because Monte Carlo sim- 
ulation generally has poor convergence properties. Since it is a statistical 
sampling method, the errors decrease only as 1/v/-N, where N is the number 
of photon packets employed in the simulation. In addition the method will 
fail miserably if the optical depths become enormous, because each photon 
performs a random walk, so the total number of scatterings is much larger 
than the optical depth. Once the optical depth exceeds about 10-100 along 
all escape paths, Monte Carlo simulation becomes difficult. In one dimen- 
sion, very sophisticated numerical methods, such as ALI (see Hubeny, this 
Volume), have been developed and are much faster; how.~/er, in three dimen- 
sions, I suspect that Monte Carlo simulation may begin to be competitive, 
especially in very complicated geometries. Despite the apparent problems 
with the Monte Carlo technique, there are two compelling reasons why I em- 
ploy Monte Carlo simulation for disk geometries. The first is that one may 
incorporate polarization calculations with no penalty in the execution speed 
and it is almost trivially easy to include the polarization transfer. The second 
is the flexibility and adaptability of the technique. Monte Carlo simulation is 
inherently a 3-d technique, so it is relatively easy to adapt the model to a va- 
riety of geometries. It is also quite easy to extend the model to include more 
physics (such as scattering by a non-thermal distribution of electrons). For ex- 
ample, the time required to change the model from an electron scattering Be 
star disk to a dusty pre-main sequence disk with bipolar jets requires about 
a day of work. In contrast, more traditional methods, such as the method of 
discrete ordinates solve a differential equation. In these models the geometry 
is determined by the boundary conditions. Often times to adapt the model 
from one geometry to another (or from one physical mechanism to another) 
requires a major rewrite of the code to incorporate a different grid structure 
or complex geometrical boundary. Although Monte Carlo may not be the 
fastest numerical technique, I have found it to be a highly productive tech- 
nique that I have been able to quickly use for a wide variety of astrophysical 
problems. 

Monte Carlo Radiation Transport. We simulate the transport of energy in 
the circumstellar envelope by following individual packets of energy as they 
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are scattered and absorbed along a randomly sampled set of paths (it is the 
random nature of this game that  gives rise to the Monte Carlo appellation). 
To make measurements, we construct an antenna and count the number of 
packets that  pass through the antenna (the antenna might be a grid cell or a 
direction-of-observation solid angle bin). In general we perform the following 
tasks: 

1. Divide the total luminosity, L = L. + Lenv, into N "photon" packets, 
each containing an equal amount of energy, L / N .  Thus, 

iV. = ( L . / L ) N  , (88) 

Nenv = ( L e , v / L ) N  , (89) 

where N. and Nen~ are the number of stellar and envelope photon packets, 
respectively. Note that  a photon packet may be partially polarized, so the 
packet energy is described by a Stokes vector, S = (I, Q, U, V). 

2. Transport the photon packets through the envelope. Scatter, Doppler 
shift, and absorb energy as appropriate until the packet emerges. 

3. Bin the emergent energy into direction-of-observation bins and frequency 
bins. The amount of energy in each bin provides the flux (and polariza- 
tion) as a function of direction and frequency. 

4. To determine position-dependent quantities such as the mean intensity, 
J , ,  or flux, H~, count the number of photons passing through a given 
grid cell, or across a cell wall, respectively. 

Algorithm. We want to calculate an emergent spectrum as a function of 
frequency and the direction of observation. Let me now outline in more detail 
the individual steps that  are taken for each photon. 

1. Pick a random point on the stellar surface. The energy per area emitted 
from the star is given by the flux, H, so the probability per area 

d P  
- -  ~ T ; ~  . (90) 
dA 

2. Pick a random direction and frequency for the photon packet. The prob- 
ability distribution is given by 

dP  
dfJdu  (x #I~(#) , (91) 

where/~ = ~. fi; i.e., the cosine of the angle between the radial direction, 
(unit normal to the stellar surface), and the photon direction, h. The 

factor # is required because the stellar specific intensity, I*, is the energy 
per area perpendicular to the beam, but we are emitting photons from 
the stellar surface, which is not perpendicular to the beam. To convert 
from intensity to surface flux, we must multiply by/~. 
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3. Calculate a random optical depth. Photon scattering and absorption is 
a Poisson process (equal probability per optical depth), so at a given 
cumulative optical depth, r,  the number of photons that  scatter and 
absorb is given by the number that  travel optical depths greater than r, 
e - r  , times the probability of interaction, dr.  Therefore, 

dP  
- -  - -  e - ~  ( 9 2 )  
dT" 

and the cumulative probability P(v) = 1 - e  - r ,  which implies v = - In~i, 
where ~i is a (new) random number uniformly distributed between 0 and 
1. 

4. Find the scattering location, s, given by 

// r = (~ + cr)p as , (93) 

where n is the absorptive opacity and ¢ is the scattering opacity (if the 
photon passes through the star, re-emit it at step 2). Finding the value of 
s is where most Monte Carlo codes spend 99% of their time, so efficiency 
is of the utmost concern for this subroutine. 

5. Determine if the photon is absorbed or scattered. The probability of 
absorption is 

P~b, -- - -  (94) ~-{-~ 

If ~i < P~bs destroy the photon and go to step 9. 
6. Doppler shift the photon into the fluid rest frame, scatter it into a new 

direction, and Doppler shift back to the stellar frame. The probability 
distribution is given by the normalized differential cross section (also 
known as the phase function), 

dP  1 d~ 
dl2 - ~r d~2 (95) 

7. Repeat steps 3-6 until the photon emerges from the circumstellar enve- 
lope. 

8. Bin the emergent photon into direction-of-observation and frequency bins. 
9. Repeat steps 1-8 for each stellar photon. The statistical sampling errors 

are determined by the number of photons observed in each bin, so set the 
total number of photons and bin sizes accordingly. 

10. Once all the stellar photons have been emitted, repeat for the envelope 
photons. Choose their initial locations and directions with a probability 

dP  
GV d J2 - Jv , (96) 

where j~, is the emissivity per volume per solid angle. 
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Using this Monte Carlo technique, Wood et al. (1996) investigated the 
effects of multiple scattering on the polarization produced by axisymmetric 
circumstellar envelopes. There are two fundamental differences in the results 
for optically thin and optically thick disks. For optically thin disks, the po- 
larization rises linearly with the electron scattering optical depth. However 
as the envelope becomes optically thick, the polarization stops increasing, at- 
tains a maximum value (typically a few percent) and then begins to decrease 
as the optical depth becomes very large. If the envelope is not extremely 
oblate, the polarization will actually decrease to zero, whereupon the po- 
sition angle "flips" by 90 ° and the polarization level begins to rise again. 
This is because, for very opaque envelopes, one can only observe the scatter- 
ing from the polar regions (the disk is essentially black), so the polarization 
position angle is now orthogonal to the optically thin results. The second 
difference is in the behavior of the polarization versus inclination angle. For 
optically thin disks, the polarization increases monotonically with inclination 
angle (P c( sin 2 i). For optically thick disks, the polarization initially rises as 
the inclination angle increases. However the polarization attains a maximum 
value at i ~ 70 ° and then decreases as the disk becomes more edge-on. Again 
this is because the optically thick disk attenuates the polarized light that was 
scattered in its interior, thereby decreasing the polarized flux. 

4.3 Spec t ra l  Line Profiles 

The radiation transfer methods that we have been discussing until now have 
been used for continuum problems. Line transfer is more difficult because the 
lines can be very optically thick and the opacity is highly peaked in frequency 
(or velocity) space, which implies that for an expanding envelope, the opac- 
ity is highly peaked in position space as well. Since the lines are so optically 
thick, one cannot use a Monte Carlo simulation to directly track the photons 
in detail as they traverse the line formation regions. However, Monte Carlo 
simulation has been employed successfully for pure scattering resonance lines. 
For pure scattering lines, photons are conserved, which means that any pho- 
ton that is scattered in a line formation zone will eventually escape in some 
random direction. Using the Sobolev approximation, one can determine the 
escape probability as a function of direction and use this escape probability 
for the scattering phase function. In this way, resonance line scattering has 
been successfully modeled using the Monte Carlo technique (see Knigge et 
al. 1995). 

One can also use the Sobolev approximation to directly calculate line pro- 
files by integrating the transfer equation. In expanding atmospheres, Hamann 
(1981) noted that most of the short-comings of the Sobolev approximation 
were its application to the integration of the transfer equation. In contrast, 
the Sobolev approximation produces quite good estimates of the source func- 
tion. Lamers et al. (1987) applied this observation and developed the Sobolev 
with Exact Integration (SEI) method for spherically symmetric winds. In 
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their method they use the Sobolev approximation to calculate the source 
function. Knowing the source function, they then perform an exact numeri- 
cal integration of the transfer equation using a line profile function, ¢~, with a 
finite Doppler or turbulent width, Vturb (in contrast, the Sobolev approxima- 
tion integrates the transfer equation by assuming that  the line profile is very 
narrow - -  essentially a Dirac delta function). This SEI method is quite fast 
and its accuracy is quite good compared with the more accurate co-moving 
frame methods. 

2-D SEI  M e t h o d .  In principle it is relatively straight-forward to extend 
the SEI method to 2-d axisymmetric geometries. One uses the generalized 
Sobolev method (Rybicki and Hummer 1978) to obtain the source function, 
and then one solves the transfer equation. The formal solution is 

i r~ = - ~¢L¢~[v - v0(1 + v~/c)] dz '  , 

/ { =  0(1 + dz' + 0 

(97) 

(q < 1), (98) 
(q > 1). 

dtv 
dz = tv~;LCv[v - -  v0(1 + v~/c)] , (99) 

d~- - \ dz / S . (100) 

Of course there are some technical difficulties in solving these equations. The 
first is that  the line profile function is highly peaked, so the only contributions 
occur where v~ = robs, where Vobs/C = ( v - -  vo)/uo.  These regions are surfaces 
of constant v=, called common velocity surfaces. In spherically symmetric 
winds with monotonically increasing velocity laws, there is only one common 
velocity surface for a given frequency of observation, and the original SEI code 
uses a velocity root finder to locate this surface for each line of sight. However, 
for axisymmetric geometries, there is no longer a single common velocity 
surface. The velocity can be quite complicated, so it is difficult to determine 
a priori the number of common velocity surfaces and even more difficult to 
find their locations. There is, however, a trick that  one can employ to avoid 
altogether the task of finding the common velocity surfaces. The problem 
with trying to use an adaptive mesh integrator to solve (99) and (100) is that  
the line is so narrow that  it is quite likely that  the integrator will step over 
the common velocity surface without ever seeing any contribution from the 
line. One way to avoid this problem is to find the location of the common 
velocity surface and force the integrator to use points in this vicinity, which 
requires a velocity root finder. However if we extend the pair of differential 
equations (99) and (100) to include all frequencies simultaneously (i.e., the 

Again we transform this pair into the simultaneous differential equations, 
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number of simultaneous differential equations that the integrator solves is 
twice the total number of frequencies, 2nf, in the line profile) then there 
is always a contribution at some frequency (as long as the spacing of the 
frequency grid is less than the turbulent width of the line profile function). 
This means that the integrator will never miss (step over) any of the common 
velocity surfaces. Using this method, we can completely avoid the need for 
a general velocity root finder. The only penalty is that the total number of 
frequency points is set by the turbulent width, so n! ~ voo/?Jturb. If the line 
is very narrow (say the thermal width) then the number of frequencies begins 
to be prohibitive. Fortunately the turbulent width is usually a large fraction 
of the terminal speed (Groenewegen and tamers 1989). 

Genera l i zed  Sobo lev  Approx ima t ion .  Now we need to obtain values for 
the line source function, S, as a function of position. For this calculation we 
employ the generalized Sobolev method as developed by Rybicki and Hummer 
(1978). For resonance lines we make the usual assumption that a reasonable 
approximation is a two level atom. For a two-level atom, the source function 
is 

s = (1 - + , ( 1 0 1 )  

where ] is the frequency-integrated mean intensity and e is determined by the 
ratio of collisional to radiative rates. The specific intensity can be split into 
three contributions: the local emission (within the local Sobolev surface), the 
stellar emission, and the diffuse envelope emission from other points in the 
envelope. A 2-d axisymmetric envelope does not necessarily have all points 
expanding away from each other as does a spherically symmetric expanding 
envelope, so the contribution to the diffuse envelope emission comes from all 
points that have zero Doppler shift with respect to the point of interest. These 
surfaces are called common point surfaces. For example, a disk in pure (but 
differential) rotation has common point surfaces that are rings of constant 
radii. Combining all three contributions to the specific intensity, we write the 
mean intensity as 

] = .~oea, + A + ]env • (103) 

Using the Sobolev approximation, the local contribution to the mean intensity 
is 

1 / [  (1--e_-r°~]  
~ocal = ~ 1 - Sd~2 = (1 - fl)S , (104) 

r0 / J  
where the Sobolev optical depth, to, and escape probability fl are given by 

kLC 
= (lOS) 

v0 [d(v. fi)/dl[ ' 

f l _  __~1 / (1 -_  e_-r°.~Vo / d%2. (106) 
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Substituting (103) and (104) into (101), the source function becomes 

S = (i - 6)(£  + Jenv) + 6By 
6 + (1 - e),3 (107) 

We still require the stellar and envelope contributions. The stellar contribu- 
tion is 

= e ~ I ;  dI2 (108) £ . / 

where 7" 7 is the (direction-dependent) optical depth to the stellar surface, 
v = v0(1 + ,5. vo/c) ,  and vo is the velocity at the location where (107) is 
evaluated. Note that v~ will be non-zero only when there are intervening 
common point surfaces between the point of interest and the stellar surface. 
The stellar contribution is relatively easy to evaluate, but this is not the case 
for the diffuse contribution. The diffuse contribution is given by 

£nv = ~1 f ( 1 - . e  - ' °  ) t o  lenv d$2 , (109) 

ipenv ~-~ / e--r:'" S~LCu[UO,5" (V -- Vo)/C] d l ,  (110) 

T env : f ~L~u[b'0,5' (%" --Vo)/C ] d l .  (111) 

Note that  to determine the diffuse contribution at a given point in the enve- 
lope, we must solve the transfer equation (110) for one frequency (line center) 
in all directions. This requires that  we develop a velocity root finder that  can 
locate all the common point surfaces. This is a great deal of work, but the 
even more insidious problem is that  the value of the source function is now 
coupled to the value of the source functions at all locations on the common 
point surfaces. This non-local coupling of the source functions means that  
we can no longer simply integrate all the appropriate equations (109)-(111) 
to determine the source function throughout the envelope. Instead we must 
iterate the solution. In other words, we must perform lambda iteration to 
determine the value of the source function versus position. Mazzali et al. 
(1992) produced a 2-d Sobolev code that  uses such lambda iteration. Fortu- 
nately it appears that  lambda iteration converges fast enough to be a useful 
technique. If one is not brave enough to perform lambda iteration, a useful 
approximation is to assume that the star dominates the contribution to the 
mean intensity; i.e., assume ]env << £ .  In this case, 

s =  (I -6)A +6B  
6 + ( i  - 6)fl (112) 

It is difficult to assess how good or bad this approximation is. Typically the 
source function in the envelope S ,~ WB~, (Castor 1970), where W is the 
"dilution factor" (relative solid angle of the star). Thus, the diffuse mean 
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intensity ]env "-~ (Y2ep/4~r)WB~,, while the stellar mean intensity J. ~ WB~. 
This implies that the approximation (112) probably is good whenever the 
common point surfaces are small (/2cp << 4~r steradians); otherwise, the dif- 
fuse contribution is probably of order the stellar contribution. 

5 D e t e r m i n a t i o n  o f  D i s k  G e o m e t r y  

Now that we have developed methods for calculating IR excesses, intrinsic 
polarization, and spectroscopic line profiles, we want to use these calculations 
to test theoretical models and to determine the geometry of circumstellar 
disks. We saw that the slope of the IR excess determines the radial exponent, 
n, of our density model, but the stellar inclination angle and disk opening 
angle were undetermined. 

By combining the IR excess with the intrinsic polarization data, we can 
obtain information about the disk geometry. Cot@ and Waters (1987) found 
that there is a correlation between the IR excess and the maximum optical 
(broad band) polarization. In a plot of polarization versus IR excesses for a 
randomly chosen set of stars, all observations lie below this upper limit and 
are distributed in a triangular-shaped region. This shape is a consequence 
of observing stars with random inclination angles. The stars that are nearly 
edge-on have maximum values for their polarization, while nearly pole-on 
stars have small polarization values. Although the IR excess depends on 
inclination angle, it does not change by more than about a factor of two. 
Therefore, the position of a star in this triangle diagram is an indication of 
its inclination angle. 

This conclusion is born out by optical Ha interferometry. Quirrenbach et 
al. (1997) show that stars with highly flattened images are near the upper 
limit in the triangle diagram, stars with intermediate flattening are in the 
middle, and stars with circularly symmetric images lie near the bottom of 
the triangle diagram. This is exactly the behavior one would expect if all Be 
stars have geometrically thin disks; we are simply looking at the projection of 
the disk on the plane of the sky. Therefore the ellipticity of the interferometric 
image should determine the inclination angle of the system. This inclination 
angle obtained from the interferometry agrees quantitatively with that in- 
ferred from the Cot~ and Waters triangle diagram, so the interpretation that 
we are viewing a thin disk at different inclination angles is quantitatively 
consistent with both the optical interferometry and triangle diagram. Unfor- 
tunately the interferometry does not have sufficient resolution to determine 
the vertical thickness of the edge-on disks; it only places an upper limit on 
the disk opening angle, AO < 20 °. 

To determine an actual value for the disk opening angle, we turn to spec- 
tropolarimetry. Although electron scattering is wavelength-dependent, the 
observed intrinsic polarization is not. This is because the stellar flux passes 
through the disk both prior to and after scattering. The disk contains not only 
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free electrons but some neutral hydrogen as well. Consequently the polarized 
flux is attenuated by the hydrogen bound-free opacity (as well as any other 
opacity sources) in the disk, and the observed polarization exhibits jumps 
across the hydrogen ionization edges. Shortward of each edge, the opacity 
decreases with decreasing wavelength (gbf o¢ •3), producing a "saw-toothed" 
shape for the polarization spectrum. The size of the polarization Balmer jump 
depends on the hydrogen opacity, which is density dependent, so fitting the 
polarization Balmer jump essentially determines the disk density. Finally the 
polarization level depends on the opening angle of the disk as discussed in 
Sect. 4.2; however, for any given polarization level, there are two possible disk 
opening angles. Wood et al. (1997) applied this technique to spectropolari- 
metric observations of ( T a u  and found that the disk could have an opening 
angle of either 2.50 or 52 °. Since the intefferometric observations show that 
the circumstellar envelope must have an opening angle less than 20 °, we may 
eliminate the thick disk solution. Combining all these observations, we con- 
clude that the opening angle is 2.5 °, which is remarkably close to the WCD 
model predictions. This is also approximately the scale height one would in- 
fer for a Keplerian disk, so this determination of the disk thickness cannot 
distinguish between WCDs and Keplerian disks. 

The bad news is that a density P0 = 5 x 10 -zl gem -3 is required to 
match the polarization Balmer jump. This density is two orders of magni- 
tude higher than predicted by the original WCD model calculations, which 
assumed the Be star mass loss rates derived by Snow (1981) using UV line 
profiles. This discrepancy could simply imply that Be stars have much higher 
mass loss rates than previously thought (recall that ionization fractions are 
very uncertain), or maybe additional physics plays a role in determining the 
disk density. As usual, the answer to these questions requires more work. 
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Abs t rac t .  In the following chapter I will discuss recent developments in the field of 
X-ray astronomy of cool stars, and try to highlight some of the basic observational 
findings obtained with the Einstein and ROSAT satellites. In particular, coronae 
appear to exist around all cool stars with outer convection zones with a minimum 
surface flux agreeing with the X-ray flux observed from solar coronal holes. The 
overall X-ray output of cool stars can vary enormously from star to star with a 
total range of four orders of magnitude. The factor most important in determining 
the actual X-ray emission level for a given star appears to be its rotation rate. For 
young stars one observes a significant evolution of rotation in the first l0 s yrs of 
their main sequence life times, which leads to a corresponding evolution of X-ray 
luminosity. I argue that magnetic fields play a very central role for the development 
and evolution of coronae, and consequently the theory of maguetohydrodynamics 
(MHD) provides the appropriate theoretical framework to describe the dynamics 
of coronal plasma. I describe the fundamental assumptions of MHD, and present 
simple models of both magnetically closed and open regions as observed on the 
Sun, and - by analogy - presumed to exist also on other stars. 

1 I n t r o d u c t i o n  

The study of coronae around other stars has recently become possible due to 
significant advances in astronomical instrumentation. Coronal plasma is - by 
definition - hot with temperatures in excess of 106 K, and loses the bulk of 
its energy at soft X-ray wavelengths. The X-ray range is therefore the most 
natural spectral range to study radiative emissions from stellar coronae, and 
in particular it is the spectral range most relevant for the overall coronal 
radiative energy budget. 

The observational progress in the study of stellar coronae can probably 
be demonstrated best by considering the number of detected coronal X-ray 
sources as a function of time (plotted in Fig. 1). The field of X-ray astronomy 
as a whole started immediately after World War II in 1948 with detection 
of X-ray emission from the Sun. This discovery was in a way not surprising 
since X-ray emission was expected as a consequence of the large coronal 
temperatures of ~ 2 106 K which were inferred from the identification of 
forbidden coronal lines (in the optical spectrum of the Sun) such as the 
"green" line at 5303/~ with emission from Fe XIV ! It then took almost 30 
years until the first truly stellar coronal source, i.e., Capella, the brightest 
"persistent" coronal source, was detected in 1975. The first breakthrough 
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for stellar X-ray astronomy occurred in the period between 1978 and 1981 
with the launch and operations of the Einstein Observatory. For the first t ime 
imagery was possible at soft X-ray wavelengths with a sensitivity sufficient to 
detect solar-like X-ray emission even at stellar distances. Quite surprisingly 
at the time, far more than 1000 coronal X-ray sources from stars distributed 
more or less throughout the Hertzsprung-Russell diagram were detected, thus 
demonstrating the ubiquity of stellar X-ray emission. With the advent of the 
ROSAT all-sky survey (RASS) the number of known coronal X-ray sources 
was increased by another order of magnitude. About a third of its 75000 
or so sources are thought to be of coronal origin, and this sample certainly 
constitutes the largest known sample of active stars. As evidenced by Fig. 1, 
there is clearly no lack of suitable sources to study in contrast to the situation 
20 years ago when less than two handfuls of coronal X-ray sources were 
known. 
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Fig.  1. Number of known coronal X-ray sources as function of time 

Why should now anybody be surprised at the observed ubiquity of stellar 
X-ray emission ? After all, the Sun is an X-ray source, and why should stars be 
any different ? There are two answers to these questions, one observationally 
oriented and the other more theoretically oriented. 
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Let me consider the observations first and assume - as a working hypoth- 
esis - that  all stars indeed emit X-rays a~ the level of the Sun, which emits 
(at solar maximum) ,,, 2× 1027 erg/sec at soft X-ray wavelengths. Given the 
characteristic limiting RASS flux of 2 x 10 -13 erg/sec/cm 2, it is straightfor- 
ward to compute the maximum distance at which a source emitting at solar 
maximum levels can still be detected as an X-ray source in the ROSAT all- 
sky survey. This distance is found to be 9 pc, which is tiny with respect to 
the dimensions of our Galaxy. A sphere around the Sun with a radius of 9 pc 
contains approximately 200 or so stars, but certainly not 20000 ! Therefore 
the initial hypothesis that  all stars emit at solar maximum levels has to be 
fundamentally wrong. Some fraction of the stellar population emits X-rays 
at levels considerably above the solar maximum level and can therefore be 
detected over far larger volumes. Thus the real surprise was not the detec- 
tion of X-ray emission from other stars, but rather the large dispersion of the 
observed levels of stellar X-ray emission. 

This immediately leads to the other more theoretically oriented answer to 
the question posed above. Clearly, the level of expectation always determines 
the level of surprise, and the basic point is that  until the early seventies 
the view had been prevalent (although by no means universally accepted) 
that  acoustic heating was the most important mechanism responsible for 
the obviously required mechanical heating of the outer layers of the Sun. 
Obviously, under the assumption of radiative equilibrium there is no way 
the temperature can increase against the flow of radiation and energy. In 
the acoustic heating picture this mechanical heating is thought to originate 
from sound waves, which are copiously produced in the outer convection 
zones of cool stars. These sound waves propagate upwards into a region with 
diminishing density, whereupon the amplitudes of the waves grow and steepen 
until shocks are formed and the wave energy is dissipated. In this picture 
coronal emission would be an immediate consequence of the fluid turbulence 
in the convection zone. Specifically one predicts, first, that the level of sound 
generation and consequently the wave flux, which finally leads to coronal 
heating, depends on the eighth power of the convective velocity; and second, 
that  the sound generation for stars occupying the same region of the HR 
diagram is the same. One therefore expects large differences in coronal X- 
ray flux between spectral types while stars of given spectral type should 
have essentially the same X-ray flux. These expectations are at variance with 
the observations I will discuss below. The observations show precisely the 
opposite trend: one finds relatively little changes in the emission level between 
spectral type, but rather large differences of up to four orders of magnitude 
in total X-ray output between stars of basically identical spectral type. 

This finding coupled with the extensive set of spatially resolved X-ray 
images obtained with Skylab (cf. Fig. 4) in the early seventies led to the re- 
alization that  for a proper description of the coronae of the Sun and those 
of other stars additional physical input is required. Magnetic fields are an 
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Fig. 2. Equipartition magnetic field strength as function of height above 
the solar photosphere; dashed line indicates typical coronal magnetic field 
strengths 

obvious candidate for such an additional ingredient. For the case of the Sun, 
the importance of magnetic fields can be readily appreciated by consider- 
ing the ratio j3 between gas and magnetic pressure, i.e.,/~ = Pgas/Pmagnetic 
as a function of height (cf. Longair 1992). Given density n and tempera- 
ture T as a function of height, one can specifically compute that magnetic 
field strength Bequ for which gas and magnetic pressure are equal through 
Bequ = ~/16~rnkT. In Fig. 2 I plot Bequ as a function of height above the 
photosphere; because of the rapid decrease of particle density with height, 
Bequ also decreases very quickly with height. Also shown in Fig. 2 is a line 
indicating a field of B¢or = 10 G, which is thought to be a typical value for 
the solar corona. Clearly, Bcor exceeds the equipartition field at most heights 
and therefore the magnetic fields will actually control the dynamics of the 
coronal plasma. 

Bob Rosner and collaborators have proposed a new scenario for the in- 
terpretation of solar and stellar activity. Its various physical ingredients and 
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Stellar Activity Flowchart 
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Fig. 3. New scenario for the interpretation of solar and stellar activity 

their interplay are described in Fig. 3. Magnetic fields play a key role in all 
the processes considered. First of all, they must be produced in the stellar in- 
teriors probably by a dynamo process, which (presumably) is the result of an 
interaction between rotation and convection. Since all cool stars have outer 
convection zones and all cool stars are likely to rotate, dynamos should be 
operating in many if not all cool stars. In principle, stellar activity could also 
work with primordial magnetic fields, but magnetic cycles as observed on the 
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Sun and possibly other stars strongly argue against the importance of pri- 
mordial fields for stellar activity. Through the process of magnetic buoyancy 
the magnetic fields generated in the deel5 interior rise to the surface, where 
they become visible as photospheric magnetic fields, visible, for example, as 
dark spots. At the same time, the outer convection zones lead to turbulence 
at the stellar surface, and the interaction between magnetic fields and turbu- 
lent fluid motions is thought to - somehow - give rise to heating. The results 
of these heating processes which are not well understood in detail depend on 
the magnetic field geometry. In magnetically closed geometries the coronal 
plasma is confined and loses the bulk of its energy by radiation, which can 
be diagnosed at the UV, EUV and X-ray wavelengths. In magnetically open 
regions on the other hand, the plasma can escape into interstellar space, thus 
giving rise to mass and angular momentum loss. 

2 B a s i c  O b s e r v a t i o n a l  R e s u l t s  

In the following section I will review some of the basic results obtained from 
the X-ray observations carried out with the recent generations of X-ray satel- 
lites. I will not aim for completeness; rather I will focus on the results most 
relevant for the overall context of my discussion. 

2.1 The  Solar -Ste l la r  Connect ion  

To set the stage for the discussion to follow, I show in Fig. 4 a "typical" 
X-ray image of the (active) Sun, i.e., one of the thousands of solar X-ray 
images obtained with the Japanese YOHKOH satellite. As is well known, 
the X-ray emission from the Sun is highly inhomogeneous, X-ray bright re- 
gions can be located close to almost X-ray dark regions, with a brightness 
contrast of a few orders of magnitude. The X-ray emission is concentrated 
in arches and tubes, which follow the magnetic field lines and connect re- 
gions of opposite magnetic magnetic polarity. Given the complex structure 
and behavior of the solar corona, one may ask the question to what extent 
the study of stellar coronae may not be a "mission impossible". Obviously, 
stellar X-ray astronomy can never compete with solar observations with re- 
spect to angular resolution, spectral coverage and signal-to-noise ratio of the 
data. The important point however is that in the context of solar physics 
one can deal with only one star. To put this in perspective, imagine the psy- 
chologist who is asked to characterize the behavior of humans and can study 
only one example out of a few billions available ! In addition, the solar physi- 
cist cannot really experiment with the Sun, but rather only observe what is 
going on. For the solar physicist there is no way to change, say, the mass, 
radius, age, rotation rate etc. of the Sun and study the influence of these 
parameters on solar activity. Strictly speaking, he cannot even tell whether 
the Sun behaves "normal" or not. In the stellar context one can - at least 
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Fig.  4. YOHKOH image of the active Sun 

in principle - do precisely this by selecting stars with different ages, masses, 
radii, rotation rates etc. and studying their coronal properties in comparison 
to what is known from the Sun. However, to this end the full range of stellar 
X-ray emission must be observed, while X-ray selected stellar samples are by 
necessity biased towards the intrinsically luminous X-ray emitters. Therefore 
the question then to what extent we can consider the Sun as a typical (or 
normal) star from the coronal point of view does require a careful sample 
selection. 

2.2 W h i c h  S t a r s  H a v e  C o r o n a e ?  

Let us first address the issue which kind of stars possess coronae and to what 
extent the scenario sketched in Fig. 3 finds any observational support. As is 
clear from Fig. 3, rotation a n d  convection are the basic required ingredients 
for the whole scheme to work. All stars probably rotate at some level - it is 
notoriously difficult to dispose of angular momentum ! However, not all stars 
have surface convection zones, and stellar structure theory predicts that  such 
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surface convection zones only occur for cool  stars with photospheric temper- 
atures below about 8000 K. Therefore one can ask whether any change in 
the observed X-ray properties occurs for stars with surface temperatures at 
-~ 8000 K. Next one can ask to what extent a rotation-activity connection 
exists at X-ray wavelengths in the sense that  larger X-ray outputs are corre- 
lated with larger rotation rates and shorter periods, and finally one can ask 
to what extent coronal formation is a universal phenomenon, or putt ing the 
question differently: Are there any cool stars that  are truly X-ray dark ? 
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Fig.  5. Mean X-ray surface brightness Fx vs. B - V color for my sample 
stars (including A-type stars drawn as upper limits). F and G type stars are 
plotted with diamonds, K and M type stars (as discussed by Schmitt  et al. 
1995) with upward triangles. For comparison the typical X-ray surface flux 
level (in the PSPC band pass) from solar coronal holes is shown by the two 
dashed curves. Clearly the observed solar coronal hole surface flux provides 
a good description of the observed stellar minimum X-ray flux 

As is clear from Fig. 5, for stars classified as late A-type or F-type, the 
detection rate is 100 %, for stars classified as G-type, the detection rate is 
very large. I argue that  also for the latter group of stars it is reasonable to 
assume the existence of coronae, since, first, all cases where all-sky survey 
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non-detections were reobserved in the pointing program resulted in detec- 
tions, and second, my upper limits lie well above the lowest detections. The 
conclusion then is that coronal formation and X-ray emission are universal 
for stars in the spectral range A7 to G9. Combining this with the findings 
obtained by Schmitt et al. (1995) it follows that all cool dwarf stars must 
be surrounded by X-ray emitting coronae. The existence of truly X-ray dark 
cool dwarf stars can of course not be entirely excluded, but one can state 
with confidence that such objects must be very rare. On the other hand, for 
nearby A-type stars, specifically the prototypical A-star Vega, extremely sen- 
sitive upper limits are now available, which demonstrate that coronae around 
those stars (if at all existent) must be very different from those around cooler 
stars. 

2.3 The  Sun in Perspect ive  

With my complete sample of solar-like stars I am now in a position to carry 
out a fair comparison between solar and stellar X-ray emission. Interest- 
ingly, the median of the observed X-ray luminosity distribution function at 
log Lx = 27.5 lies actually somewhat above typical solar maximum emis- 
sion levels. Therefore one must look at the Sun as a star with an activity 
below average, however, the observed range (between maximum and mini- 
mum) of solar soft X-ray luminosity compares well with the low luminosity 
part of the observed stellar X-ray luminosity distribution function, and there- 
fore the Sun is certainly not atypical among solar-like stars. The X-ray surface 
fluxes and luminosities (cf. Fig. 5 and Fig. 3 in Schmitt et al. 1995) are very 
similar for the whole sample studied, and in fact for all cool stars when the 
F and G type dwarfs discussed in this paper are combined with the K and 
M dwarfs presented by Schmitt et al. (1995). The distribution functions for 
X-ray luminosity (cf. Fig. 4 in Schmitt et al. 1995) and X-ray surface flux 
vary smoothly over the observed range of data values with no sign of any 
bimodal distribution. The most natural explanation for these findings seems 
to be to assume that the same heating processes that are operating in the 
solar corona are also operating in stellar coronae. 

2.4 Ro t a t i on -Ac t iv i t y  Connec t ion  

Why do two almost identical stars differ in their coronal output by several 
orders of magnitude as evidenced by Fig. 5 ? If magnetic dynamos do indeed 
operate in the stellar interior, stellar rotation must play a very important 
role, and numerous studies have searched for relationships between activity 
and rotation. X-ray luminosity and rotation are indeed correlated, such that 
the more rapid rotators produce more X-ray output. This was first discovered 
for RS CVn systems by Walter and Bowyer (1981) and was generalized by 
Pallavicini et al. (1981) as 

L x  = 1027(vsini)  1"9 (1) 
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In Fig. 6 I show a ROSAT version for the rotation-activity connection (taken 
from Hempelmann et al. 1995). 

7 

6 

9 'I .... I''''I''''I''~'I '' 

B 

" " \ L  " 

S Q  ~ 

• Q 

-0,5 0.0 0.5 1.0 ~1.5 
log P 

Fig .  6. Mean X-ray surface flux Fx vs. rotation period P for a (complete) 
sample of cool stars with photometrically determined rotation periods (from 
Hempelmann et al. 1995) 

For stars of a given spectral type, hence given radius, the X-ray vs. rota- 
tion relationship holds only up to a certain point. Obviously, if one were to 
increase vsini in (1), extremely large X-ray luminosities are obtained. What 
is observed instead is that for the most active stars a maximum X-ray lumi- 
nosity Lx,max is produced such that 

LX,~n.~ _ 1 0 _ 3  , (2)  
Lbol 

where Lbol indicates the star's bolometric  luminosity. In other words, empir- 
ically one finds that no more than 1 permille of  the total stellar output  can 
be emitted at soft X-ray wavelengths, are stars with Lx ,~ 10 -3  × Lbo! are 
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called "saturated".  The interpretation of this effect is indeed surface satu- 
ration. The more rapid the rotation, the more activity is generated up to - 
couching this in solar terms - where the star runs out of available surface 
area to accommodate more active regions and plage. The saturation limit of 
f×/fbol ,.,m 10 -3 (or equivalently Lx/Lbol ~ 10 -3) appears to extend all the 
way along the main sequence from G stars to the latest M dwarfs (Fleming et 
al. 1993). The dependence of the saturation limit on rotation velocity has been 
beautifully shown by the I~OSAT observations of the Pleiades (Stauffer et al. 
1994) and a Per (Randich et al. 1995). Using as activity indicator L×/Lbol, 
one finds in both clusters a more or less linear relationship between Lx/Lbol 
and the rotation velocity up to velocities of ,,, 15 km/sec, at which point the 
L×/Lbo| values cluster around the saturation limit of Lx/Lbol ~-, 10 -3. 
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Fig.  7. Integral X-ray luminosity distributions for a number of young clusters 
(a Per, Pleiades, Hyades and Praesepe; data  courtesy of Dr. S. Randich. Note 
the substantial decrease in mean X-ray luminosity with age; the Sun at solar 
maximum would still be below the plot scale ! 

A summary of the ROSAT X-ray observations is shown in Fig. 7, where 
- by courtesy of Dr. S. Randich (ESO) - the integral X-ray luminosity dis- 
tribution functions for solar-like (i.e. G-type!) stars in a number of rather 
young nearby clusters are shown. The most X-ray luminous stars are found 
in the o~ Per cluster (age 50 Myrs), while the X-ray luminosities of the older 
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Pleiades (age 70 Myrs) and still older Hyades (age ~ 700 Myrs) and Praesepe 
(age ~ 700 Myrs) clusters are distinctly lower. It is worthwhile mentioning, 
however, that the X-ray luminosity of the Sun at solar maximum is still below 
the plot scale in Fig. 7 ! Very clearly, there is an enormous evolution in X-ray 
luminosity during the first few 100 Myrs main sequence life time for solar-like 
stars. It is generally thought that because of the rotation-activity connection 
this luminosity evolution is a reflection of the rotational evolution, which is 
observed in the period distributions of cool stars of the same age class. In 
Fig. 8 I plot for the a Per, Pleiades and Hyades clusters measured rotation 
periods as a function of color (the data are courtesy of J. Stauffer, SAO). 
Very obviously, the mean rotation period increases with age in a similar fash- 
ion as the mean X-ray output decreases with age. To the extent that the 
measured rotation periods refer to the star as a whole (and not just to the 
surface layer to which the actual measurements refer) one concludes that a 
substantial angular momentum loss must occur for main-sequence stars dur- 
ing the first few hundred million years. Young stars tend to rotate far more 
rapidly than the present Sun, and because of the rotation-activity connection 
such stars also have substantially increased X-ray outputs which makes such 
stars detectable over rather large distances. 
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2.5 Spect ra l  P roper t i e s  of X-Ray Coronae 

From the Sun one observes both thermal and non-thermal X-ray emission. 
Non-thermal X-ray emission is observed during flares mostly although not 
exclusively in their impulsive phases at photon energies above ,~ 20 keV. At 
lower photon energies the emission is always dominated by thermal emission 
and in the form of numerous spectral lines of highly excited atoms which allow 
very detailed plasma diagnostics. The typical temperatures of the quiescent 
coronal plasma is of the order 2-3 106 K with relatively little spread; however, 
during flares one observes significantly hotter plasma with temperatures of 2 
107 K and higher, but this plasma is only present in transient form. 

In the stellar context, the possibilities to extract spectral information from 
the observed X-ray data have been quite limited. In particular, essentially no 
data (on coronal X-ray sources) exist at photon energies > 10 keV, and con- 
sequently there is so far no direct evidence for non-thermal X-ray emission 
from stellar coronae, although such emission is definitely expected to occur. 
All of the stellar X-ray data refer to photon energies < 10 keV, and most 
observations are even restricted to photon energies < 2 keV with often quite 
moderate energy resolutions. The spectral resolution of proportional counters 
is such that only broad band photometry can be performed, and it is cus- 
tomary to describe the spectral energy distribution of the recorded photons 
in terms of a so-called hardness ratio HR defined as 

Hard Rate - S o f t  Rate 
HR = Soft Rate +Hard  Rate ' (3) 

where hard and soft rate are - for the case of the ROSAT PSPC - the count 
rates recorded above and below 0.5 keV respectively. The advantage of such 
an instrumental parameter is that it is independent of any modeling, which 
requires quite a large number of assumptions on the underlying spectrum. It 
is instructive to plot for the volume-limited sample of stars the observed mean 
X-ray surface flux Fx vs. HR (cf. Fig. 9). As is clear from Fig. 9, there is a 
clear correlation between Fx and HR such that stars with larger surface flux 
tend to have harder X-ray spectra. If one "calibrates" the PSPC hardness 
ratios with plasma emission codes, one finds that coronal temperatures of 
,~ 1.5 106 K correspond to HR ~ -0.9, while temperatures of ~ 1.0 l0 T K 
correspond to HR ,~ 0.0. In other words, the coronal temperatures of the 
more active stars seem to be similar to those found during solar flares, the 
difference being that the latter is transient while the former appears to be 
persistent. 

This last conclusion obviously depends on the correctness of the interpre- 
tation of the X-ray emission being thermal. Using the spectrometers on board 
the Extreme Ultraviolet Explorer (EUVE) Satellite it has become possible to 
record high resolution (A/AA ~ 200) EUV spectra of a few of the brightest 
coronal X-ray sources. An example is shown in Fig. 10, where I show the EUV 
spectrum of the nearby star Procyon (spectral type F5 IV, d -- 3.5 pc, Lx 



290 J/irgen H.M.M. Schmitt 

,.J 

N e a r b y  C o o l  S t a r s  

f . . . .  1 . . . .  l . . . .  

o 

g 

o~o 

z~ 

o 

I 
oo ~ a 

o 
o 

A 

o 
o 

o 

I ~ J J ~ I ~ ~ ~ ~ t t ~ L ~ I r ~ , t 

- 1.0 -0.5 0 , 0  0,5 

Hordness Rotio 
1.0 

Fig. 9. Plot of X-ray luminosity Lx vs. spectral hardness between soft and 
hard PSPC counts for F and G stars (diamonds) and K and M stars (triangles; 
from Schmitt et al. 1995). The correlation between hardness and total X-ray 
output is obvious, but a large scatter around the regression curve is also 
apparent. A typical value in terms of Fx and Hl:t for a solar coronal hole is 
also shown 

3 1028 erg/sec) in the range 170 - 210/~. Clearly, the spectrum is dominated 
by line emission, which turns out to be attributable to iron in the ionization 
stages Fe IX to Fe XIII; the highest detectable ionization stage of iron is that 
of Fe XVI, which is detected through weak line emission at 335/k. 

The EUV spectrum of Procyon is identical - at least for practical pur- 
poses - to that of the Sun; in Fig. 11 I plot a solar EUV spectrum taken 
with the Grazing Incidence Spectrometer (GIS) on board SOHO, and the ex- 
tremely large similarity of the EUV spectra of the Sun and Procyon becomes 
evident by comparing Fig. 10 and Fig. 11, implying that the mean coronal 
temperatures of the Sun and Procyon must be very similar. 

The EUV spectra of active stars, however, look quite different. In Fig. 12 
I plot the EUV spectrum of the active star Algol (Lx ~ 5 103o erg/sec) in 
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Fig. 10. EUVE medium wavelength spectrum for Procyon (in histogram rep- 
resentation) in the region 170 to 200/~.. Almost all the lines are due to iron 
in ionization stages Fe IX to Fe XIII 

the range 90 - 140 ~. In the case of Algol the spectrum is again dominated 
by spectral lines, which can however be attributed exclusively to iron in 
ionization stages Fe XV to Fe XXIV. The only lines in common between 
Procyon and Algol are the Fe XV line at 284/~ and the Fe XVI line at 335 
/~.. Therefore the mean coronal temperature in Algol must significantly exceed 
that of Procyon and that of the Sun. This is however precisely the implication 
of Fig. 9, which states that large coronal X-ray surface fluxes go together with 
large coronal temperature. In some sense, Fig. 9 is the first case of an X-ray 
Hertzsprung-Russell diagram, plotting (X-ray) activity (measured in terms 
of surface flux) vs (X-ray) temperature. 

2.6 Physical Properties of Stellar Coronae 

The Role of  Plasma.  Most astrophysical fluids and in particular the gas 
in solar and stellar coronae differ from fluids encountered on the Earth or in 
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sentation) in the region 170 to 200/~. Almost all the lines are due to iron in 
ionization stages Fe IX to Fe XIII; note the similarity to the EUVE Procyon 
spectrum shown in Fig. 10 

the laboratory in one very important aspect: They are usually highly or fully 
ionized, while the oceans, rivers, winds etc. on the Earth are not. Ionized gas is 
usually referred to as "plasma", and in fact, most of the matter astrophysicists 
are dealing with are in plasma state. As a consequence of the ionization of the 
plasma, electrodynamic forces are often the most important forces acting on a 
plasma. Magnetohydrodynamic theory provides a description of these forces 
within the context of continuum mechanics; effects of kinetic plasma physics 
are not discussed in this paper. Also, the physical properties of plasma are 
quite different from those of neutral matter, and I will deal with those first, 
and then discuss the basic assumptions of magnetohydrodynamics. 

Basic P l a sma  Proper t i es .  Since plasma is ionized, it contains copious 
numbers of very mobile charge carriers and is therefore expected to be a very 
good conductor of both electric currents and heat. For a fully ionized plasma 
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the electric conductivity cr can be expressed as 

ne e2 Tei 
cr ---- (4) 

m e  

where ne, e, and me denote electron density, charge and mass as usual. Wei 
is the effective electron-ion collision time. If one replaces vei by the effective 
electron self-collision time re, which can be written according to Spitzer (1962) 
as  

T3/2 
re = 0.266 - -  (sec) ,  (5) 

ne In A 

one obtains results accurate to within a factor of 2. Here in A denotes the 
so-called Coulomb logarithm which is a very weakly dependent function of 
temperature  and density. Under typical coronal conditions, i.e., 6 < log T < 7 
and 7 < log n < 9, In A ~-, 20 with better than 10% accuracy. Putt ing in all 
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the numbers one finally obtains 

= 1.53 × i0 -2T3/2 (ohm-lm -I) . (6) 
lnA 

Note that  the unit ohm -1 m -1 is the appropriate MKS unit for electric 
conductivity. Interestingly, the above expression for the conductivity is in- 
dependent of density. Obviously, the above expression becomes meaningful 
only when compared to the electric conductivities of materials known from 
everyday experience. I have therefore compiled in Table 1 values of electric 
conductivity for a number of materials ranging from very good conductors 
to almost perfect insulators. Also given are the values for plasma under con- 
ditions encountered in the coronae of the Sun and other stars. As is clear 
from Table 1, hot plasma as encountered in an active star behaves - as far 
as electric conductivity is concerned - almost like copper ! In other words, 
plasma is able to conduct charges and hence currents extremely well, and 
therefore it is clear that  it wilt be rather difficult to build up and maintain 
large gradients of electric potential in a plasma. 

Tab le  1. Electric conductivities of some sample materials 

Material Temperature (K) g ohm -1 m -1 

Plasma 2x 106 l a x  lO s 

Plasma l x  10 z 2.4× 107 

Copper 291 5.9x 10 z 

Mercury 291 1.0× 106 

China 291 1× 10 -12 

Good electric conductors are also good heat conductors. The reason for 
this is simply that  the particles responsible for charge transport are also 
responsible for heat transport. Spitzer (1962) derives for the thermal conduc- 
tivity ~]t along the magnetic field the expression 

gl[ = 1.8 x 10 -5T5/2 erg/cm/sec/K (7) 
lnA 

The conductivity perpendicular to the field is strongly suppressed. Spitzer 
(1962) quotes 

t~.l. - -  2 × 10 - 2 7  n2 
- -  - - -  ( 8 )  

~11 T 3  B 2 " 

The RJ-IS of (8) is very small, and therefore ~j. is negligible for many ap- 
plications. In Table 2 I have again compiled the thermal conductivities of a 
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number of materials and compared them to that of typical coronal plasma. As 
can be seen from Table 2, plasma is an extremely good heat conductor, and 
therefore it will be quite difficult to maintain large temperature gradients in 
a plasma since these will drive enormous heat fluxes to minimize temperature 
gradients. 

Table 2. Thermal conductivities of some sample materials 

Material Temperature (K) erg cm -1 sec -1 K -1 

Plasma lx  106 7.9x l0 s 

Plasma lx  107 2.3x 1011 

Silver 273 4.2x 107 

Lead 273 3.6x 106 

Air 273 2.4x 10 3 

Water 273 5.4x 10 4 

Finally, plasma can lose energy by radiation. Very often astrophysical 
plasmas are optically thin, a property enormously simplifying the radiative 
transfer. In this case the radiation field is decoupled from the plasma, and 
the radiative loss function Prad(T), i.e., the energy lost per unit volume of 
plasma, takes the form 

Prad(T) -- nenHQ(T) • (9) 

Here Q(T) denotes the so-called radiative cooling function, which has been 
computed by a large number of authors. In Fig. 13 1 plot the radiative cooling 
function as calculated by Raymond and Smith (1977). As can be seen from 
Fig. 13, plasma at temperatures of-~ 105 K cools most efficiently. Somewhat 
counterintuitively to the blackbody case, plasma at larger temperatures cools 
less efficiently, or putting it differently, the same of amount of emission mea- 
sure of plasma will lose less and less energy by radiation the hotter its tem- 
perature. A useful parametrisation for the energy losses in the temperature 
range 105K < T < 107K is given by 

Q(T) = 10 -22 T$1/2 (erg cm 3) (10) 

where 7'6 denotes the temperature in units of millions of degrees. 

The  Role  of  Magne t ic  Fields. The Sun is - naturally - the only star where 
detailed structural studies of photospheric magnetic fields are possible. The 
magnetic fields in the solar photosphere are found to be compressed into 
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Fig.  13. Radiative loss function Q(T) (in units of erg cm 3) versus tempera- 
ture T 

rather small flux tubes with magnetic field strengths of .-. 1500 G and filling 
factors well below the percent level; the photospheric gas outside these flux 
tubes appears to be essentially field-free. Little is known about the magnetic 
field structure in other stars. Combining the few measurements of magnetic 
field strength and filling factor with the Doppler images of rapidly rotating 
active stars, it is suggestive to assume that  the essential difference between 
the solar photosphere and that  of an active late-type star is not the strength 
of the magnetic field, but rather its filling factor. In fact, all the available evi- 
dence suggests that  magnetic fields must cover not one percent but significant 
fractions of surfaces of the most active stars. 

M a g n e t o h y d r o d y n a m i c s .  The Earth's surface, i.e., the site of our every- 
day life, is an electrically neutral environment, where electrodynamic and 
hydrodynamic phenomena are completely decoupled. As a consequence, for 
example, the reception of radio or television is - at least to a large extent - in- 
dependent of the prevailing weather condition. Physically this means that  the 
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equations describing electrodynamic phenomena, i.e., Maxwell's equations, 
and the hydrodynamic equations are decoupled, and can be solved sepa- 
rately. However, most astrophysical plasmas and in particular the plasma in 
stellar coronae are highly ionized and therefore highly conducting. In such an 
environment electrodynamic and hydrodynamic phenomena are closely cou- 
pled and the appropriate framework for the theoretical description of such 
plasmas is known as Magnetohydrodynamics (MHD). 

Maxwel l ' s  Equat ions .  Let us first recall the set of Maxwell's equations, 
which describe how the electric field E and the magnetic field (or more pre- 
cisely the magnetic induction) B are generated from currents j and charges 

pc: B 0E 
v × - ,  = j +  (11) 

V.  B = 0 (12) 
aB 

v × E _ at  (13) 

Pc V.  E = - -  . (14) 

Here the constants p and e denote magnetic permeability and electric per- 
mittivity of free space. Maxwell's equations, first, specify how the sources 
of electric fields, i.e., free charges and time-variable electric fields, produce 
magnetic fields, and second, specify, that magnetic fields must be free of 
monopoles, and are in turn produced by currents and time-variable electric 
fields. 

H y d r o d y n a m i c  Equat ions .  In ordinary hydrodynamics one describes the 
bulk properties of the plasma, i.e., density, pressure, temperature and veloc- 
ity, by the following set of equations: 

0R + V.  (pv) = 0 (15) 

p ( ~  + v .  W )  = -VV + pg (16) 

p = 2 p k T .  (17) 
mH 

Here p, T, and p denote pressure, temperature and density of the plasma 
respectively, g specifies the external gravity acting on the plasma. The first 
two equations are of course simply the conservation equations for mass and 
momentum, while the third equation is the equation of state which one al- 
ways assumes to be that of an ideal gas. In order to close the above set of 
hydrodynamicM equations, one needs an energy equation; often it is possible 
to capture the essential physics of a given problem by assuming isothermality, 
i.e, T = const. 
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M a g n e t o h y d r o d y n a m i c  E q u a t i o n s  ( M H D ) .  Just as in ordinary hydro- 
dynamics, one continues to describe the plasma as a single-species fluid, gov- 
erned by the above derived hydrodynamic equations. However, the presence 
of charges in the plasma leads to the appearance of an additional force, i.e., 
the Lorentz force in the momentum equation, and also Maxwell's equations 
are altered in the following way to arrive at the set of magnetohydrodynamic 
equations describing non-relativistic MHD. One first assumes all plasma mo- 
tions to be non-relativistic and obey v < <  c. As a consequence, the displace- 
ment current in Ampere's law can be neglected and one writes 

B 
V x -- = j  . (18) 

# 

Because ~7 • B = 0 still holds, one deduces 

V .j = 0 (19) 

which implies that  there cannot be any substantial accumulation of charge 
and that  currents flow in closed circuits. Ohm's law relates the electric field 
strength E to the current density j through 

j = ~.  E (20) 

where ~r denotes the electric conductivity. In the form (20) Ohm's law refers 
to the frame comoving with the plasma, i.e., the frame where v = 0. Lorentz 
transformation of the electric field E¢om into the field Eob in the observer 
frame yields (in first order in v/c) 

Eob = Ecom + v x B (21) 

and thus Ohm's law becomes 

5 = ~r(E + v x B) (22) 

which clearly does provide a coupling between the electrodynamic and hy- 
drodynamic plasma properties. I will show below that  the v x B term usually 
dominates the electric fields in the observer's frame. 

The other coupling comes through the Lorentz force. It is well known that  
currents flowing in a magnetic field feel a force (Biot-Savart's law), and one 
writes analogously for the force density 

FLor = 5 x B (23) 

so that  the MHD momentum equation becomes 

0v 
p ( ~ -  + v .  Vv) = - V p  + pg + j x B (24) 

which provides yet another coupling between the electrodynamics and hydro- 
dynamics of a plasma. 
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As I already demonstrated above, the electrical conductivity of plasma 
is often quite large. In the limit ¢ = e~, Ohm's law would lead to infinitely 
large current densities. This can only be avoided by demanding 

E + v  x B = 0 (25) 

which implies that there are no electric fields in the plasma rest frame, or 
putting it differently, the electric fields due to the current term are totally 
negligible. The infinite conductivity limit is also known as the ideal MHD 
approximation. 

An extremely important equation in any MHD context is the so-called 
induction equation which relates magnetic field strength to fluid velocity. If 
one combines Faraday's law with Ohm's law, one obtains 

OB 
0 - V × ( v x B )  i V  - -  - - × ( v  x B)  (26) 

o'# 

which can be rewritten using the vector identity V x (V x B) = V ( V - B ) - A B .  
Here r 1 = ~ denotes the magnetic diffusivity. In ideal MHD the induction 
equation simplifies to 

0B 
0-q- = v × (v × B) (27) 

which implies that the specification of the magnetic field distribution B (x, t=0) 
and the velocity field v(x, t) determines the magnetic field distribution at all 
later times (kinematic theory). Of course, because of the Lorentz force in the 
momentum equation, the magnetic field does influence the velocity field, and 
therefore MHD theory is intrinsically non-linear. 

A few C o m m e n t s .  A few comments on the basic assumptions and concepts 
of MHD seem to be in order in this context. According to the MHD version of 
Ampere's law, currents are the only sources of magnetic fields. For a current 
to flow, however, one requires that the velocity difference between electrons 
and ions, i.e., the drift velocity between negative and positive charges Vdrif t - - ~  

Vel - -  Vion, must be non-zero. This seems to violate our assumption that  the 
whole plasma can be treated as a single species fluid and can be characterized 
by a single velocity. We therefore have to ask ourselves how large are the 
required drift speeds under typical astrophysical circumstances. 

By order of magnitude one can estimate the required drift velocities. The 
current is determined by the curl of the magnetic field and therefore j ~ s .  L ~ '  
where L is a characteristic size scale of the MHD system under consideration. 
On the other hand, the current can also be expressed through the drift speed 
Vdrift a s  j ---- nelectron e Vdrif t (which implicitly assumes r~electron -" n ion) ,  and 
combining these two equations and eliminating j results in the estimate 

B 
V d r i f t -  Lpnele (28) 
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It is quite instructive to evaluate (28) for a few cases. For example, using 
B -- 1000 G, L = 2 x 101° cm and n = 1023 cm -3 as typical parameters for a 
sunspot, one obtains Vdrift '~ 2.5 X 10 -12 cm/sec; using B = 10 G, L = 2 x 109 
cm and n -- 2 x 109 cm -3 as typical parameters for a solar coronal active 
region, one finds ?)drift ~' 10 cm/sec. In both cases the required drift speeds 
are ridiculously small and most certainly not measurable. Hence the MHD 
assumptions are well justified. Note that  in (28), the required drift velocity 
is inversely proportional to the size scale L of the system. Astrophysical 
systems are, almost by definition, large, and therefore tend to obey the MHD 
approximation. 

If one evaluates in the same fashion as above the terms in the force equa- 
tion, one finds that  the j x B term dominates under coronal conditions. In 
order to achieve force balance, it is therefore important  to satisfy the relation 

j x B = ( V x B )  x B = 0  (29) 

and magnetic field configuration satisfying (29) are called force-free. Magnetic 
field configurations satisfying the even more restricted equation 

v x B = o (30) 

are current-free and potential. 
Returning now to my previous examples, one can calculate the required 

current jco~, yielding the prescribed magnetic field strengths and length scales. 
Using Ampere's law, one finds jcor = 4.0 10 -s  A m -2, and with Ohm's law 
and assuming Spitzer conductivities the associated electric field strength nec- 
essary to drive the currents can be calculated as E¢or = 2.8 10 - l °  V m -1. 
This value needs to be compared to the electric fields obtained from Lorentz 
transformations from the plasma rest frame to the observer's frame, i.e., 
E = - v  x B, which gives Ecor,Lo : 1.0 V m -1 if typical plasma speeds 
of v ~ 1 km sec -1 are assumed. Clearly, Zcor,Lo ~>:> Ecor by quite a few 
orders of magnitude, so that changing the input parameters B, L or v will 
not change the conclusion. Therefore the magnetic field is basically given 
by magnetostatics, and the electric fields in the observer frame result from 
Lorentz transforming via v x B; thus both currents and electric fields are 
derived quantities, which can be calculated (if desired) from the magnetic 
and velocity fields. 

3 M a g n e t i c a l l y  C l o s e d  R e g i o n s  

In the following section I will consider some MHD models of regions relevant 
to solar and stellar coronae. Let me first consider stat ionary MHD mod- 
els of regions with magnetically closed topology, i.e., the prototypical X-ray 
emitting hot loops. In such regions one observes - at least outside flares - no 
substantial plasma velocities. The dynamic pressure in the force equation can 
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therefore be neglected by setting v ~ 0, which satisfies the mass conservation 
equation trivially. The force equation then becomes 

Vp + g + j × B  0 . (31) 
P 

Because of its definition the Lorentz force has no component along the mag- 
netic field; multiplying (31) with B, one obtains 

B.(-VP + g)=0, (32) 
P 

which implies that hydrostatic equilibrium must prevail along a magnetic field 
line. Consequently, the gas pressure along a field line will remain constant 
if the characteristic scale size of the system is less than the pressure scale 
height Ap = 2kT For the simplest loop models it is customary to assume grnH " 
p = const, an assumption which approximately satisfies the force equation. 

The temperature structure of a magnetically closed region must therefore 
be determined by the only remaining equation, i.e., the energy equation. 
Here one assumes that at any given point along the magnetic loop there is a 
local energy balance between energy losses through conduction and radiative 
cooling and energy gains by some unspecified heating mechanism. Specifically 
one writes 

•Fcond -{- Brad + H = 0 , (33) 

where F¢ond, Prad and H denote the conductive flux, the radiative cooling 
rate and the volumetric heating rate respectively. I assume the "classical" 
form of the conductive flux through 

~ 7 F c o n d  = A ' c o T h / 2 ~ s ,  (34) 

where A denotes the loop cross section, and ,% the Spitzer conductivity (cf. 
(7)). The radiative cooling is given as in Fig. 13, and can be expressed in 
terms of pressure through 

p2 
P r o d -  4k2T2Q(T) ,  (35) 

where I have assumed n n  ----- n e  for simplicity; for a fully ionized gas with 
solar abundances n H =  0.85 ne holds. In order to make analytical progress, I 
assume that the loop cross section A, the cooling function Q and the heating 
H have temperature dependences of the following form: 

A(T)  = AoT a Q(T)  = x T  ~ H(T)  = HoT ~ , (36) 

where the parameters a, ~ and 7 can be arbitrarily chosen. In (36) the case 
a -- 0 describes the (canonical) case of a loop with constant cross section, 

1 gives the (canonical) cooling function for plasma in the temperature 
range 2 - 8  106 K,  and ~ = 0 assumes constant heating per unit volume, while 
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/3 -- - 1  corresponds to constant heating per unit mass. These temperature 
dependences are admittedly rather arbitrary, their main justification being 
the analytical solvability of the resulting equations. With these definitions 
the energy equation finally reads 

ds tzoYa+5/2 P2XT~+a-2 - -  - ~ + H o T  ~ + ~  = 0 , (37) 

which is a second order ordinary differential equation determining the tem- 
perature T as a function of the length s along the loop. 

Loop Scaling Laws. I now proceed with the solution of the energy equa- 
tion (37). In order to arrive at a physically meaningful solution, appropriate 
boundary conditions must be imposed. The choice of the boundary condi- 
tions becomes more apparent, if equation (37) is rewritten in terms of the 
variables Fcond and T through 

1 d Fc2on d 2 p X~o T~+2~+1/2 + HoTg+2~+5/2 = 0 (38) 
2 dT 4k 2 

The important point now is that at the top of the loop the temperature is 
assumed to become maximal, and therefore the conductive flux must vanish 
there. Furthermore, at the bottom of the loop, the conductive flux becomes 
also very small because of the T ~/2 dependence of the thermal conductivity. 
Thus formally one requires the boundary conditions 

Fcond(Tmax) : Fcond(Tmin) : 0 (39) 

where Tm~× and Train denote the temperature at loop top and bottom respec- 
tively. Physically the boundary condition (38) means that the loop is ther- 
mally isolated and that the overall energy budget of the loop is only given by 
radiation and heating; conduction only redistributes the energy deposited by 
the heating process but it cannot make any energy leave the system. 

With the boundary conditions (39) the loop energy equation (35) can 
be integrated once. The first term can be integrated trivially and vanishes 
because of the choice of boundary conditions. The other two terms are func- 
tions of T alone - note that p = const is assumed ! - and thus performing the 
integration must result in a relation between the remaining parameters H0, 
Tmax, Tmin and p. If the temperatures at loop top and bottom are assumed to 
differ substantially, i.e., Tm~x >> Train, the contributions arising from Train 
can be ignored altogether. In practice, this last assumption is satisfied ex- 
tremely well since one typically chooses Tmin : 20000 K, i.e., a temperature 
where hydrogen becomes fully ionized, and Tmax = 106 K or greater, i.e., a 
coronal temperature. 

Working out the algebra, one then obtains a scaling relation between H0, 
Tm~x and p of the form 

7/2 + 
H 0 =  4 T 3 / 2 + 2 ~ + 7  

(40) 
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As a consequence of (40), the normalization of the heating function H(T) 
cannot be arbitrarily chosen; once Tm~x and p are known - and both of these 
parameters can be inferred from observations - the heating function H(T) is 
fixed at least within the considered parametric framework. 

Putting the obtained expression for H0 back in the differential equation 
for the conductive flux (38), I can integrate the energy equation once between 
Train and T to obtain 

F2ond = 4k2(3/2 + ~/+ 2a) (41) 

an equation determining the conductive flux and hence the temperature 
gradient at any point along the loop. Taking the square root, reexpressing 
Frond with dT/ds, and introducing a non-dimensional temperature variable 

T r -- ~ one obtains 

r~ l~ -714(1- r~ t - '~+2) l l  2 : P  2k~0(3/2+-~+2~)/ d s .  
(42) 

The integral on the LHS of (42) must be evaluated between 0 and 1 and can 
be expressed in terms of the F-function through 

L 
1 dr v/~ r ( ~ )  

I~"r = r ' Y / 2 - 7 / 4 ( 1  - r Z - ' ~ + 2 )  1/2 = 2 --~ fl  --  "/ F (  15+2Z--4"78-b4fl--4"l ) ' 
(43) 

while the RHS of (43) is integrated trivially. Since I~,7 is dimensionless and 
of order unity for all reasonable values of the parameters a, ~ and 7, one 
obtains a second loop scaling law relating the physical parameters p, L, and 
Tmax in the form 

T(l:/4-.y/2)iz,.y(2k~o(3/2 + 7 + 2a))  1/2 = P" L . (44) 
X 

This scaling law (44) asserts that the pressure p, the peak temperature Tmax, 
and the length L of a magnetically closed region cannot be independently 
chosen. The important point now is that in the case of the Sun all three 
physical parameters in the scaling law (44) can be directly measured. Hence 
the scaling law (44) can be verified (or falsified !) by observations. In general 
it is the case that the measured loop lengths show good agreement with those 
"predicted" from the knowledge of Tm~x and p. 

The other remarkable point about the scaling law (44) is that it is quite 
robust with respect to the parameters a, /3 and 7. In fact, the parameters 
a and j3, which describe the dependence of loop cross section and heating 
on temperature, only enter the normalization of the scaling law. Only the 
parameter 7, which describes the temperature dependence of the radiative 
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cooling and is thus given by atomic physics, enters into the physical quanti- 
ties. Using the canonical value of 7 = -½, one obtains the "standard" form 
of the loop scaling law 

T ~  ~ p.  L , (45) 

which, as we have seen, is independent of loop cross section and heating at 
least in the frame work of our analytical model, and rather insensitive to the 
precise form of the cooling function. This robustness is of course responsible 
for the great success of the scaling law (44), on the other hand it is also in 
some sense a curse. One would have naively assumed that a precise deter- 
mination of the temperature structure along the loop would determine the 
heating function and thus reveal the nature of the underlying heating mech- 
anism; however, the temperature structure is more or less independent of the 
precise spatial variation of the heating function because of the high efficiency 
of thermal conduction. Therefore, one can gain only little insight into the 
heating mechanism, but at least the observations clearly indicate that the 
basic assumptions, i.e., a magnetically confined static plasma in energy equi- 
librium between heating and cooling, capture the essential physics of a hot 
X-ray emitting loop. 

3.1 Magne t ica l ly  Open Regions 

I consider next the modeling of magnetically open regions. First I will show 
that such regions must deviate from hydrostatic equilibrium and that flows 
(i.e., winds) must exist. Next, I will construct simple wind models, and em- 
phasize the important physics of such thermally driven winds. 

Imposs ib i l i ty  of  a Stat ic  Corona.  In magnetically open regions a corona 
cannot be maintained in hydrostatic or magnetostatic equilibrium. In order 
to demonstrate this let me assume a purely radial field geometry such that 

B =  B r ( r )  e ,  (46) 

is the only relevant magnetic field component. Since I of course demand 
~7 • B = 0, one finds the radial dependence of Br(r): 

1 
Br(r)--~ r-- 7 (47) 

Such a field configuration is obviously current-free, and therefore also force- 
free and consequently the Lorentz force does not contribute in the force equa- 
tion. Since I am looking for static solutions, I of course set v -- 0, and only 
need to solve the equation of hydrostatic equilibrium: 

dR_ pGMst.r (4S) 
d r  r 2 ' 
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where Mstar denotes the mass of the star and G the constant of gravitation as 
usual. The total mass in the corona is assumed to be so small that it does not 
contribute to the overall mass and gravity of the star. For the energy equation 
I appeal to the large thermal conductivity of plasma and assume T = const, 
which clearly implies Fcond : 0; I note that results do not sensitively depend 
on this choice as long as Fcond is sufficiently small. With this assumption 
and using the ideal gas law, the equation of hydrostatic equilibrium can be 
readily expressed in terms of the particle density n: 

d ln(n) r0 1 
d------x-- - g x 2 ' (49) 

where r0 is a reference level at which some initial density no and temperature  
To are obtained. The variable x is a dimensionless radial variable and H the 
scale height: 

r 2kT0r02 
= - H - ( 5 0 )  

ro GMstarmH 

Equation (49) can be readily integrated and has the solution 

which satisfies the boundary condition n(r0) = no by construction. The im- 
portant  feature of this solution is that  it approaches a finite value no e x p ( -  ~-) 
as r approaches infinity. Since T is constant, the asymptotic pressure is there- 
fore also constant. The ratio between initial and asymptotic pressure is then 
determined by the ratio 

ro G MstarmH 
- - 7 . 7  , ( 5 2 )  

H 2kT0r0 

where the numerical value of 7.7 applies to solar conditions. As is clear from 
(52), the asymptotic pressure solely depends on coronal temperature and 
radius, both of which are rather well known at least for the Sun. Using char- 
acteristic values for p0, one then finds asymptotic pressures which exceed the 
pressure inferred for the interstellar medium by many orders of magnitude. 
It is therefore difficult to avoid the conclusion that the ISM pressure is not 
sufficient to confine the solar corona and that the corona must expand into 
the ISM in violation of my initial assumption of hydrostatic equilibrium. 

C o r o n a l  W i n d s .  As demonstrated in the previous section, a magnetically 
open region cannot be maintained in hydrostatic equilibrium. It is there- 
fore invalid to assume v = O, instead I now assume a stationary, spherically 
symmetric flow field v(r) satisfying the mass conservation equation 

:( 2pv) = o (s3) 
dr  
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and the force equation 

dv d R  p G M  o (54) 
pv dr  - dr  r 2 

For the energy equation I assume again T(r)  = To = const,  which implies the 
operation of a suitable heating mechanism to produce the assumed isother- 
mality. At any rate, as in the case of a static corona, the high thermal conduc- 
tivity of the coronal plasma ensures that large temperature gradients cannot 
be maintained. 

The mass conservation equation can be easily integrated with the mass 
loss rate M as integration constant: 

47rpvr ~ = M . (55) 

Mass conservation implies that in a stationary wind density and velocity 
cannot be independently chosen. Using then the ideal gas law and (55) in 
the force equation, one can first replace the pressure gradient with a density 
gradient, which in turn can be expressed in terms of a velocity gradient. 
Collecting terms, one obtains a non-linear ordinary differential equation for 
the velocity field v(r): 

dv 2 2 G M  1 - 4kT, r 
: rnHGM (56)  

dr r 2 1 -  2kT . .  
rt~H U~ 

The term on the right hand side of (56) can be recognized as the ratio of the 
thermal and potential energy in the nominator, and the ratio between thermal  
and kinetic energy in the denominator. The thermal energy stays constant by 
the assumption of isothermality, while the potential energy approaches zero 
as r approaches oo. Therefore the nominator f ( r )  in (56) 

4kTor 
f ( r )  = 1 m H G M  (57) 

will change sign at the so-called critical radius re given by 

rnH G M 
- ( 5 8 )  

4k To 

For a typical temperature of a solar coronal hole (i.e., To ~ 1.5 106 K) 
one finds re = 3.84 R o. A regular solution of the wind equation (56) must 
therefore satisfy additional conditions at the critical point re: 

dv 
Case  A :  ~rr[~¢= 0 , (59) 

or, alternatively, the denominator must also vanish at the critical radius, 
which in turn imposes a condition on the velocity vc at the critical point: 

2kTo (60) Case  B : v c -- 
mH 
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These two types of solution have very different properties. In Case  A so- 
lutions there is no acceleration at the critical point; therefore the maximal 
velocity will be reached at the critical point, and if the flow is subsonic near 
the surface regions (an implicitly made assumption), the flow will remain 
subsonic at all radii. On the other hand, in Case  B there is acceleration at 
the critical point, and the critical velocity vc is immediately recognized as 
the isothermal sound speed. Hence in the type B solutions the flow changes 
from being subsonic for radii r < rc to being supersonic for radii r > re. 
Solutions of type A are known as "breeze" solutions, while solutions of type 
B are called "wind" solutions. 

It is instructive to cast the wind equation (56) into dimensionless form by 
introducing the variables: 

r ?J 
= - = - . ( 6 1 )  

r c  ~c 

In terms of the variables ÷ and 7) the wind equation reads 

dr2  ( I  - I )  : 
d÷ ~)~ - ( I  - ~) . (62) 

The last equation can be analytically integrated with the solution 

4 
~ - l n ~ 2  = 41n(~) + - : + C .  (63) 

r 

with an arbitrary integration constant C. For the critical solution one of 
course demands 

÷ ¢ =  i ~c---- i , (64) 

therefore the choice C - - 3  yields precisely the critical solution. If C < -3 ,  
one obtains breeze solutions, while the choice C > - 3  leads to double-valued 
solutions which are rejected on physical grounds. 

In order to illustrate wind and breeze solutions, I plot in Fig. 14 the run of 
velocity (expressed in terms of ~) as a function of radial distance (expressed 
in terms of ~) for a couple of subsonic breeze solutions and the critical wind 
solution; the breeze solutions are plotted as dotted line, the critical wind so- 
lution is plotted as a solid line. As is clear from Fig. i4, the different solutions 
differ only little in the subsonic part, but differ dramatically in the supersonic 
regime. I emphasize that  no other solutions of the wind equation exist such 
that the velocity approaches zero at the inner wind boundary. 

With the help of the solution (63), one can determine the asymptotic 
solution properties. On the right hand side of (63), the ln(~) term will always 
dominate asymptotically, however, we obtain different dependences for the 
velocity terms on the left hand side of (63). For the critical solution the 7) 2 
term dominates, so that  asymptotically 

~5 ,~ 2vc(ln ÷)z/2 (65) 
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F ig .  14. ~ vs. ~ for breeze solutions (dotted lines) and the critical wind solu- 
tion (solid line). All other wind solutions do not satisfy appropriate conditions 
at the inner wind boundary 

On the other hand, for the breeze solution the ln~) 2 term dominates, so that  
asymptotically 

1 
v "~ r2 (66) 

Obviously, both asymptotic solutions are unphysical. The wind solution goes 
to infinity (albeit only logarithmically), clearly a not particularly desirable 
property, while the breeze solution results in a constant asymptotic density 
and hence pressure, which leads to a mismatch between asymptotic and in- 
terstellar medium pressure as in the static corona model. In both cases, this 
unphysical behavior is a consequence of the assumption To = const ,  which 
implies heating at very large distances from the stellar surface. It can be 
shown, however, that  by using a more realistic energy equation internally 
consistent wind solutions, which approach a finite velocity at infinity, and 
internally consistent breeze solutions with zero pressure at infinity can be 
constructed. 
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4 T h e  A n g u l a r  M o m e n t u m  P r o b l e m  

In order to estimate the angular momen tum of a star, let us model the star as 
a sphere of radius R, with a radial density variation p(r),  and rotat ing rigidly 
with some angular velocity/2.  The angular momen tum vector is parallel to 
the rotat ion axis and has a magnitude 

J = 2 , 4 p ( , ) d ,  /2 si s¢ d e  = - -  (67) 
a0 3 

For the special case p = c o n s t  the remaining integral in (67) can be evaluated 
a~ 

J : 2-MstarR2/2 = K MstarR2/2 (68) 
5 

where Mstar as before is the total  mass of the star under consideration. Ob- 
viously, the approximation p = c o n s t  is rather poor for a real star  and will 
overest imate the total  angular momentum;  however, the basic functional de- 
pendence of J on Mstar, R and [2 remains the same, except that  the constant 

2 obtained for a rigid body. K has a value of ~ 1-~ instead of the value g 
With these numbers we can now determine the total  angular m o m e n t u m  

of the Sun. Using R = 7 101° cm, M = 2 1033 g, a n d / 2  = 2.5 10 -6 sec -1 
results in a value of Jo  = 9.8 1048 g c m  2 sec -1 . As demonstra ted earlier, 
younger stars can rotate considerably faster than the present age Sun, but 
for the discussion to follow I will adopt J = 1049 g cm2sec -1 as a typical 
value for a stellar angular momentum.  From observations one knows that  a 
significant fraction of the stellar angular momen tum is lost on a t ime scale of 
109 yrs and possibly even as short as 108 yrs. In the absence of magnetic fields, 
this angular m om en t um  must  be carried away by a mass flow. I f  one assumes 
that  each mass element leaving the star carries with it its rigid body angular 
m o m e n t u m  per unit mass at the stellar surface, an angular m o m e n t u m  loss 
rate of 

j 2 " (69) = R , t ~ , r / 2 M  

is obtained. This last expression (69) will clearly overestimate the actual 
angular m o m e n t u m  losses since it applies only at the equatorial regions. Pro- 
ceeding now to compute the angular m o m e n t u m  loss t ime scale one finds 

J 2 M  
r z  = d; - 5 M ~ 101Syrs (70) 

with the numerical value resulting from assuming a solar value for the mass 
loss rate, i.e., M® = 1.5 1012 g sec -1. The  angular m o m e n t u m  t ime scale in 
(70) is of course absurdly long, and exceeds the presumed age of the universe 
by a few orders of magni tude ! Even more importantly,  (70) implies that  a 
significant fraction of the total angular m o m e n t u m  can only be lost if a sig- 
nificant fraction of the mass is lost at the same time. This violates, however, 
both observations as well as stellar evolution theory, and one therefore con- 
cludes that  mass loss cannot be the dominant  contributor to the observed 
angular m om en t um  loss of cool stars like the Sun. 
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5 M a g n e t i z e d  C o r o n a l  W i n d  

In a landmark paper Weber and Davis (1967) pointed out the fact that a 
m a g n e t i z e d  wind can in fact solve the angular problem as posed in the pre- 
vious section. Since the coronal plasma is magnetized, it has to be described 
with the magnetohydrodynamic rather than hydrodynamic equations. Let me 
therefore assume a stationary and isothermal wind as in the case of a Parker 
wind; in addition, I assume that the underlying star is rotating rigidly with 
an angular velocity f2 and is the source of the magnetic field permeating 
the wind. Furthermore all physical variables are assumed to have only radial 
dependence, and I envisage a stationary flow only in the equatorial plane. 
The MHD equations governing this wind are given by the mass conservation 
equation 

V.  (pv) = 0 (71) 

the force equation 

B 2 G M p  ^ 
pv.  ~Tv -- -V(p  -F ~-~) -F B- •B r~ -e r  . (72) 

I of course demand 
V.  B = 0 (73) 

as usual and the stationary induction equation becomes 

( V x B )  x B = 0  . (74) 

Both the magnetic field and velocity field are assumed to have only radial 
and azimuthal components which are just as all the other physical variables 
functions of r only: 

v = vcg¢ zr Urer B = Bce~, q- Brer • (75) 

Next I try to express these equations in conservation form. Trivially one 
obtains 

J~-(r2pv) ---- 0 (76) 
Or 

as in the non-magnetic case, and also 

A(r2Br) = 0 (77) 
Or 

Among the three components of the induction equation only the C-component 
is non-triviah 

0 ~ r  (urB~ - ,~s~) = 0 .  (78) 

Finally, the C-component of the force equation can be expressed as 

o( ) 
or (Purr2)(r v,) (r~Br) (rB,) = 0 .  (79) 

tt 
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The radial component of the force equation is the only remaining equation. 
Even in the nonmagnetic case it cannot be written in conservation form; it 
now becomes rather complicated because of the magnetic field related terms. 
Therefore four equations are available in conservation form (requiring the 
specification of four constants of motion) as well as the radial component 
of the force equation to determine the radial and azimuthal components of 
magnetic field and velocity and density; note that density and temperature 
determine pressure through (17). Thus mathematically one has five equations 
to determine five unknown functions of radial distance r. 

The first two conservation equations can be readily integrated to yield 

M 
(r pv) = , (80) 

with the first integration constant being determined by the total mass loss 
/k/, and 

r°2 (81) Br = Bo~- , 

where Bo specifies the radial field at some reference level to. Alternatively, 
the product Bor 2 can be thought of the total magnetic flux leaving the star 
which naturally needs to be conserved. The C-component of the induction 
equation can be integrated to yield 

r (urB¢ - v~Br)= -ro~nBo , (82) 

where it has been assumed that at the reference level ro, first, the azimuthal 
plasma speed is given by the solid body rotation value 

v¢(ro) = ro~ , (83) 

with $2 denoting the angular velocity of the star, and second, that the radial 
velocity ur(ro) is sufficiently small so that the inequality 

re(to) Bo >>  ur ( ro )B¢( ro )  (84) 

is satisfied. Finally, the C-component of the force equation is integrated in 
the following form: 

((purr2)(r v¢) (r2B~) ( r B ¢ ) )  = L " ~ I  (85) 
# 47r ' 

with the integration constant L to be interpreted momentarily. Using (80), 
this last expression can be written as 

r v ¢  rBrB_______~¢ _ L . (86) 
ppUr 

Since the product (r re) represents the angular  m o m e n t u m  per unit mass 
of the outflowing plasma, it is suggestive to interpret L as the total angular 
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momentum contained in plasma a n d  fields, which again and not surprisingly 
is conserved. One might naively assume that  the total angular momentum 
per unit mass L can be arbitrarily specified. However, this is not the case 
as can be seen as follows: If the product rB¢ is eliminated from the force 
equation (86) by substituting from the induction equation (82) in terms of 
(r v~), one can solve for the azimuthal velocity field vc~(r). It is customary 
to introduce the so-called radial Alfv~nic Mach number MA defined as 

(87) ' 

and with this definition the azimuthal flow field re(r) is given by 

- - 1  

= 9 : - i  ' (88) 

which expresses vt(r)  in terms of constants, the radial distance r and the 
yet unknown function M~(r). Recalling the definition of the Alfv~nic Mach 
number, I can write 

ppU2r " Urp  r2  " 2 1 1 (89) 
M I =  Br 2 ---- #( r--~r ) p " ~ p  

since all the other terms are constants. If I am now allowed to appeal to 
intuition and argue that  the plasma density must be monotonically decreas- 
ing outwards, it is clear that  M~ will at tain its smallest value at the inner 
boundary To and approach infinity as r approaches infinity. If MA(ro) < 1 
there will therefore exist a so-called Alfv~n-critical radius rn at which 

M~(rA) = 1 , (90) 

where the denominator of (88) changes sign. In order to illustrate the ra- 
dial dependence of the Alfv~nic Mach number, I have calculated M~(r) for 
a model wind with the solar mass loss rate (i.e., M o = 1.5 1012 g sec-1), a 
mean radial surface field of 0.5 G, and using for the radial flow field somewhat 
unrealistically a critical Parker wind solution without any magnetic field ef- 
fects. The resulting curve M~,(r) is shown in Fig. 15 as solid line; the Alfv~n 
critical point rA lies at about 17 solar radii, i.e., much further out than the 
(thermal) critical point. 

Obviously, if the azimuthal flow field v¢(r) is to be regular at rA, the 
nominator of (88) must also vanish at the Alfv~n critical point, i.e., implying 
that  the condition 

L = r2A Y2 (91) 

holds. Therefore, as advertised earlier, the (mathe.matical) integration con- 
stant L, which represents (physically) the total angular momentum per unit 
mass can in  fac t  n o t  be  a r b i t r a r i l y  specif ied,  rather it is determined, 
first, by the rotation rate of the star f2, and second, by the radius rA, at 
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Fig.  15. Alfv~nic Mach number M~ vs. radius r for a solar-like coronal wind. 
Intersection between solid and dotted line gives Alfv~n critical point 

which the radial outflow becomes super-Alfv~nic. To illustrate the radial de- 
pendence of the azimuthal flow field I have calculated v¢ (r) for the above 
model using the solar rotation rate of [2 = 2.5 10 .6  sec -1. The resulting 
curve re ( r )  is plotted in Fig. 16. 

Finally, I return to the angular momentum loss of a magnetized wind. The 
total angular momentum per unit mass L, given by (91), is that of a rigidly 
rotating body with radius rA ! Since rA > P~tar, the angular momentum loss 
rates will be much higher. In fact, comparing (69) and (91), one finds 

Jmagnetic 2 rAlfvdn 
Jnon-magnetic -- ~star2 (92) 

Unfortunately, the value of rAlfv~n/Rstar is not known even for the Sun, where 
it may reach 50, and we have no idea about the stellar case. For young stars 
one may expect larger magnetic fluxes also in open regions and hence even 
larger Alfv~nic Mach numbers. In order to reach an angular momentum loss 
time scale of rj ~ I0 s yrs as required by the observations, one needs the 
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Fig.  16. Azimuthal flow field v¢ vs. radius r (normalized w.r.t, isothermal 
sound speed) for a solar-like coronal wind assuming the solar surface rotation 
rate (dotted line). For comparison the assumed radial flow field (scaled by 
0.1) is also shown (solid line); see text for details 

Alfv6nic point to be located at about 300 stellar radii, which is certainly 
within reach of the model presented here. At any rate, my above discussion 
should have made it abundantly clear that  without the presence of  a hot mag- 
netized corona it is next to impossible to understand the angular momentum 
loss of late-type stars observed during their main sequence careers. 
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1 W h y ?  

There are several reasons to dedicate part of a Summer School on Stellar 
Atmospheres to stellar structure and evolution. First of all (and certainly 
not the least) it is where my personal interest lies. And being responsible 
for the 1996 edition of the School it was an opportunity I couldn't miss. I'm 
modelling the structure and evolution of stars, and it's fun. 

But there is also the physical reality. Atmospheres, although often largely 
defined by the local physical circumstances, depend on the interior processes 
for their macroscopic as well as their microscopic behaviour, certainly on the 
medium and long term timescales. Atmospheres are the fingerprints of the 
interior. To emphasize the need of knowledge of the interior to understand 
the atmospheres, allow me to simplify the situation in JP's Two Trivial The- 
orems: 
a) There is no atmosphere without interior (actual or in the past). 
b) Different atmospheres reflect different interiors. 

The above statements merely state the strong existing links between the 
atmosphere and the stellar interior. Atmospheres are observed because of es- 
caping radiation. That energy comes essentially from the interior. Moreover, 
the composition of the atmosphere is by and large the result of stellar evo- 
lution. The fractions of the various elements in the outer layers, even when 
unmodified by mixing or mass loss, are the result of the yields of previous 
generations of stars. Large scale phenomena (both structural and tempo- 
ral), linked to specific evolutionary stages, alter the chemical composition, 
and hence the whole structure of the atmosphere. Drastic examples of such 
changes can be found in interacting binaries, planetary nebulae, etc. 

Finally, it is instructive to point out some of the similarities and differences 
between the stellar interior and the atmosphere. 

Both parts of the star are made out of gas, but the interior part is totally 
(or almost) ionized, whereas the atmosphere is more complex in containing 
partially ionized constituents and neutral gas as well. The inner part is dom- 
inated by the energy production (either from nuclear or from gravitational 
contraction), the atmosphere is not (apart from eventual shocks, recombi- 
nation processes, etc., that do not really contribute to the overall energy 
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generation). The interior is opaque, while the atmosphere can be considered 
as transparent (apart from clumps, clouds, rings, dust,...). This opacity dif- 
ference is of course linked to the high interior density versus the low density 
in the outer layers. As a consequence, in treating the gas mass is an impor- 
tant  parameter for the interior, while radius (or optical depth) is a better 
parameter at the outside of the star. The interior tells the most important  
part of its story through long term variations, whereas the atmosphere reveals 
intriguing processes through short term variations. 

2 R e c i p e  a n d  I n g r e d i e n t s  

2 . 1  E q u a t i o n s  

The structure of a star in hydrostatic equilibrium is given by the well known 
four structure equations (in Lagrangian coordinates): 

Mass conservation: 

3r 1 
a m -  4~'r~p (1) 

Hydrostatic equilibrium: 

0P 
0m 

Energy conservation: 

Energy transport: 

Gm 1 c92r 
- -  47rr 4 4~-r 4 0t 2 • 

(2) 

c3L OT ,~ Op 
= - - cp -$( + - - -  . ( 3 )  

p Ot 

0T GmT XF 
0m - 4~rr4P (4) 

with ~Y = XTr in the case of radiative transport and ~7 = Vad in the case of 
convective transport. 

It  is convenient to transform these relations further with respect to the 
relative mass: ~ = 1 - m(r)/M. 

2.2 I n g r e d i e n t s  

To solve the equations we need to describe a number of properties of stellar 
material hidden behind various symbols like r, en, eu, 6, cp, XT~d, ~. 

We assume them to be known functions of P, T and the chemical compo- 
sition functions Xi(m,t). 

p = p(P, T, Xi) (equation of state) 
V,d = V~d(P, T, Xi) 
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= a(P, T, Xi) 
= ~(P, T, Xi) (Rosseland mean of the opacity, including conduction) 

e = e(P, T, Xi) 
Finally, we have to define the boundary conditions in the center and at 

the border of the star. 
In the center we obviously have r(# = 1) = 0 and, because of the conser- 

vation of energy, also Lr(/* = 1) = 0. 
At the surface we assume the Eddington approximation for the temper- 

ature T 4 = L/(8rrar=), defined at r = II~ff, together with P defined through 
the equation of state at r = Raft. The independent variables are m and t. 
All in all we deal with a two-boundary (at m=0  and m=M) initial value (at 
t = to) problem of solving four non-linear, partial differential equations. 

2.3 S h o o t i n g  (a S o l u t i o n )  

a) Occam's razor does not work ...... 
It is obvious that in this case Occam's razor will not work. The simplest 

approach will not lead to a solution. Indeed, simply integrating the equations 
towards the surface from the estimated central values T¢ and pc, to meet the 
surface boundary conditions, will not work. The difference between the values 
of T and P obtained through integration and the outer boundary values lead 
to a correction on the estimated values of Tc and pc. But small changes in the 
center produce huge variations further out in the star leading to divergence. 
The reverse, integrating from the outside inward to the center suffers from 
the same problem. 

b) But Schwarzschild's razor sometimes does ...... 
A way out is avoiding too large variations, by integrating less far. This 

method is the Schwarzschild method, which can be used when the stars have 
a fairly simple structure. This is especially the case at the onset of the evo- 
lution (example: start of the main sequence evolution for a star of 5 M®). 
The equations are integrated from the center outwards and from the border 
inwards to a point inside the star, called the fitting point. Iteratively one then 
tries to match the two solutions at the predefined layer Mftt (Schwarzschild 
1058). 

c) And Henyey's shaver always works, but how clean? 
When stars have a more complicated structure (i.e. varying chemical pro- 

file, shell sources, ...) the foregoing method fails because of numerical insta- 
bilities. The required stability can be obtained by a method developed by 
Henyey et al. (1959, 1964). This method is now widely applied in most of the 
existing evolution codes. The star is divided into a number of layers (zones) 
in such a way that the variables (or a power or combination of them) vary 
linear on the interval between zoning points (Fig. 1). The structure equations 
are now replaced by difference equations. The outermost interval is the at- 
mosphere, which is integrated inwards towards a fitpoint. Tha t  is the layer 
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where inner and outer solution must match. Iteration is performed until the 
required convergence is obtained. 

Center Surface 

1 2 i i+1 N-1 N 

I ll I l l l  i i  I l l  I I I l l l t l  
series difference equations d e ¢  
expansion integration 

Fig.  1. The mass layer distribution (zoning) in the Henyey iteration method 

An example of a difference equation is the one that follows from the 
partial differential equation for the conservation of mass (in the absence of 
mass flows): 

[M] r j + 1 - r j  _ (5) 

Mj+I -- Mj j+~ 

with the subscripts denoting values on the grid points (j, j ÷ l )  or some av- 
erage in between two grid points (j÷1/2).  The linearization of the structure 
equations introduces a truncation error, which is difficult to follow. The trun- 
cation error in the above equation is 

- (Mj+I  - Mj) ~ y " '  . (6) 

Precise zoning is required to keep it small. 
d) The best of two worlds: the multiple fitting method. 
In a paper by Wilson (1981) a method was proposed that  combines the 

stability of the Henyey method with the accuracy of the Schwarzschild inte- 
gration. In this method a generalized Newton iteration is performed on the 
condition equations at the fit points. Instead of one fitpoint, one chooses N 
fitpoints, one of them serving as main fitpoint, where inward and outward 
solution meet (Fig. 2). In between two fitpoints the structure equations are 
integrated (inward from the surface, and outward from the center). From the 
center to the first fitpoint series expansions are used. The truncation error is 
controlled with a predictor-eorrector method. 
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Fig.  2. The mass layer distribution (fitting points) in the multiple fitting 
method 

3 Evolut ion:  From W h e r e f r o m  to W he re t o ,  
bu t  Most  of All: W h y ?  

3.1 Masses  M a k e  All  t h e  Di f fe rence  

We can divide the evolution of stars into three groups, according to the mass, 
though other classifications are possible. The three groups are the low mass 
stars, the intermediate mass stars, and the high mass stars. For each group 
the mass limit is influenced by the treatment of the interior, more specifically 
the amount of overshooting applied in the models (cf. Sect. 3.3.3). We will 
give values for convective cores determined by the Schwarzschild criterion (cf. 
Sect. 3.3.1) and, between brackets, for overshooting characterized by a=0.2 
(where a denotes the fraction of the local pressure scale height by which the 
convective core extends beyond the classical Schwarzschild core). 

The low mass stars are defined as stars with mass smaller than 2.3 M o 
(M < 1.6 to 1.8 Mo). After core hydrogen burning these stars develop a 
helium core with degenerated electrons. The degeneracy is lifted by the onset 
of helium burning through a helium flash. The intermediate mass stars are 
stars with masses ranging between 2.3 and 9 M O (1.6 to 1.8 M O and 6 Mo). 
In these stars helium is ignited in non-degenerate conditions, but after the 
stage of core helium burning a highly electron-degenerated carbon-oxygen 
core develops. Finally, the massive star group consists of stars more massive 
than 9 M o (6 Mo). In these stars electron degeneracy does not occur. At cen- 
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tral temperatures exceeding 6 10SK they produce Ne and Mg after quiescent 
carbon ignition. 

Apart from this mass distinction, we can also separate the (early) evolu- 
tion of the stars according to the threshold value of the central temperature 
of 2 107 K on the main sequence (corresponding to a mass of about 1.3 
Mo). For temperatures below this, the proton-proton cycle is the more ac- 
tive nuclear burning source, while for larger temperatures the CNO cycle will 
dominate. In small stars the core will contract faster and more pronounced 
because the energy production rate c ..m pX2T n, whereas in massive stars this 
is e ~ pXZcNoT n. 

There are also structural differences between small and large masses in the 
outer layers of the stars. For low masses the hydrogen (and helium) ionization 
zone reduce the adiabatic gradient and hence, convective zones occur in the 
outer envelope. For larger masses (i.e. with effective temperature on the main 
sequence exceeding 8300 K, or M >1.7 M®), the ionization zones are very 
thin and the outer layers remain in radiative equilibrium. 

3.2 Timescales  

For the central hydrogen burning stage the timescale can be estimated as 
tH -- EH/L. 

The energy produced through nuclear burning is proportional to the 
amount of hydrogen, which in order of magnitude can be approximated by 
the mass of the star. The luminosity is proportional to M n (mass-luminosity 
relation). On average n=3.5, in the range 1 to 10 M o it is about 3.9, in the 
range 1 to 40 M o one obtains a value of 3.35. The estimate for the timescale 
of core hydrogen burning then becomes tH " M/L ~ M 1-n --~ M -2"~. 

The relation shows that the hydrogen burning timescale strongly decreases 
towards larger M-values. 

Comparison of the estimates derived with the above relation with the 
timescales derived from model calculations (Meynet et al. 1994) shows that 
the estimates must be used cautiously. Table 1 gives the ratio of the calculated 
timescales to the mass power, tH/M -2"~. This ratio clearly varies over two 
orders of magnitude in the range 3 to 120 M O. 

Table 1. Timescales tH for core hydrogen burning (Meynet et al. 1994) and 
the ratio tn /M -25. The number between brackets denotes the power of ten 

M / M  o 0.8 1 3 40 120 
tH/106yr 25027.9 9961.7 352.5 4.3 2.6 
tH/M -2"5 1.4 (4) 9.9 (3) 5.5 (3) 4.3 (4) 4.1 (5) 
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3.3 Convect ion and  Other  Mixings 
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3.3.1. Stabi l i ty  against  convect ion and  mixing 

One of the important but still poorly known aspects of stellar structure is the 
extension of convection inside a star, and the associated mixing. The standard 
theory of convection is known as the Mixing Length Theory (BShm-Vitense 
1958). In this framework the boundary of a convective region is determined 
by a local criterion. 

We call a medium unstable when small random motions of matter are 
amplified and evolve into large scale motions. Stability against convective 
motion is usually investigated using a model of rising blobs of matter, trans- 
porting heat and kinetic energy. In this model the buoyancy force, responsible 
for the motion of the bubble, is evaluated (and as the border is determined 
only by the vanishing of the buoyancy force, it implies that the inertia of the 
convective elements is neglected). Four conditions determine the rise of the 
bubble: 
a) The difference in mean molecular weight between the bubble and the 
surrounding medium, resulting from the p-gradient in the medium: 

dln# dlnP 
A# + # dlnP d---~- Ar = 0 . (7) 

b) The adiabatic displacement of the bubble, allowing for a small but non- 
negligible heat loss during the rise: 

dAT T dlnP (~7 - ~7~d) dAr 
d--Y- + dr +  /XT = 0 .  (S) 

c) The perfect gas equation under the assumption of continuous pressure 
equilibrium between bubble and medium: 

Ap AT A~ 
+XT-T +x~ ~ = 0 .  (9) 

Xp P 
d) The equation of motion due to buoyancy, with g being the local accelera- 
tion: 

d2r 
p~ + gap = 0 . (10) 

The equations are homogeneous, and can be linearized because the A's are 
small. The trivial solution is of course the one with all variations A = 0, but 
we look specifically for a solution in which all quantities vary with the same 
phase co (real or complex), for example Ar = Are '~t. A negative value of w 
implies a stable medium in which the disturbances die out rapidly, a positive 
co implies an unstable medium in which the disturbances are amplified. We 
will obtain nontrivial solutions if the determinant from the coefficients AT, 
A;, A t ,  Ar is zero, resulting in the following condition for co: 
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L Xp dr" XTdlnP + Ag~-~p dr dlnPJ = 0  . 
(11) 

In the absence of heat loss (A = O) we obtain 

w2 = gX_S.TdlnP ( X~ dln#~ 
- x p  ( 1 2 )  

XT dlnP ] 

We have a medium that is unstable against convection if w 2 is positive. 
Because d lnP /dr  is negative and XT and Xp are positive, we have 

V > V a d  X/.z dlnp (13) 
XT d l n P  

(note that  X~, < 0). If there is some heat loss during the rise of the bubble, 
then we have an unstable medium if re(w) > 0. This is obtained for the 
following three conditions: 

dt_!~ > 0 
dlnr 

_~_ dln/~ 
> ~Tad --  XT dlnP 
> ~ a d  • 

The first condition describes the onset of a Rayleigh-Taylor instability, 
the second is the Ledoux criterion, the third the Schwarzschild criterion. 
Remark that  for dln#/dlnr  = 0 the Ledoux and the Schwarzschild criterion 
become identical. 

In practice one uses the radiative and the adiabatic gradient, hence, adopt- 
ing the Schwarzschild criterion, convection sets in if 

3 ~P Lr 
~7r - 16rcac----~ T 4 Mr > ~Tad " (14) 

In the outer layers of the star the ratio Lr/Mr remains constant, whereas 
the adiabatic gradient decreases in regions of partial ionization. This means 
that  these regions can become convectively unstable. 

Because of the simplified way to determine the border of a convective 
region, and especially the existence of the nonzero velocity of the elements 
at the edge, additional mixing processes may occur at the border, such as 
semiconvection and overshooting, which will be discussed in the following 
sections. 

3.3.2. S e m i c o n v e c t i o n  

Semiconvection is a slow form of mixing occurring in a zone intermediate 
between the convective core and the surface, a region with decreasing mean 
molecular weight. 

In massive stars semiconvection occurs because the radiation pressure 
dominates the pressure and the electron scattering the opacity. In luminous 
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stars the high radiation pressure leads to a tendency for the convective core to 
grow (with increasing mass) and to expand (with evolution). A discontinuity 
appears at the border of the convective core. Because of the dominant electron 
scattering (opposed to Kramers bound-free absorption) radiative equilibrium 
cannot be maintained outside the formal convective core (Schwarzschild and 
Harm 1965). A second type of semiconvection occurs during core He-burning 
(Schwarzschild 1970, Paczynski 1971, Castellani et al. 1971 a, b). It results 
from the increasing opacity in the convective core as the carbon abundance 
increases, implying an increasing radiative temperature gradient. This type 
of semiconvection only shows up in stars with masses up to 5 M o. Finally, 
at the end of helium burning the core may show an oscillatory growth, called 
"Breathing Convection" (Castellani et al. 1985). 

In these zones mixing should occur to smooth out the gradient in molec- 
ular weight. However, we would thus change the chemical composition, and 
the radiative gradient would decrease below the adiabatic. 

We thus face a dilemma: If no mixing is applied, the region outside the 
core is unstable against convection, if mixing is applied, the region becomes 
stable, and hence no homogenization should take place. 

One way of dealing with this is to install a so-called neutrality condition 
in that  region (i.e. X7r = xY~a) through suitable mixing that  involves a re- 
distribution of the chemical elements over a finite region to smooth out the 
gradient in mean molecular weight. 

Because the fluxes of heat and kinetic energy are extremely small, and 
the energy transport is essentially radiative, semiconvection is a diffusion 
problem. Hence, we can adopt a diffusion coefficient that  is proportional to 
the difference of the gradients ~7r - V~d 

o'~c = Av~(Vr - Vad) if Vr > V~d (15) 

gsc = 0 if X7r _< X7ad 

with v~ the adiabatic sound velocity, and A a typical length scale. 

(16) 

3.3.3. Convect ive  ove r shoo t  

This process comes from the difference between the condition for the border 
of the convective core (zero acceleration) and the nonzero velocity of the 
elements at that moment. In principle the varying molecular weight gradient 
assures an almost immediate stop of the elements (Saslow and Schwarzschild 
1965), but Shaviv and Salpeter (1973) showed that the overshoot distance can 
amount to a nonnegligible fraction of the pressure scale height. The buoyancy 
force Fb is proportional to the difference of the temperature gradients. Below 
the boundary that  difference is very small and positive. Above, the radiative 
gradient becomes much smaller than the adiabatic in a distance of one scale 
height. Hence a drastic change from small and positive Fb to a large and 
negative value takes place over a short distance, bringing the penetrating 
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element to an immediate stop. However, if we consider the temperature  excess 
A T  of the rising bubbles over the surroundings, we remark that  below the 
boundary A T  >_ 0 while above it A T  < 0. This means that  the convective 
flux F¢onv becomes negative (being proportional to v AT):  Fconv < 0. 

B e c a u s e  Ftot  : Fconv + Fr is constant, we have an increase of Fr and 
hence V -- -(3/4ac)(~p/T3)Fr will increase. As a consequence the absolute 
value of Vr - XTad decreases and the buoyancy force will change less drastic. 
The elements coming through the border will decelerate less strongly and a 
bet ter  penetrat ion in the radiative zone is obtained. 

In most t reatments of the overshoot an ad hoc approach is used. The 
boundary of the overshoot region is linked to the gas pressure, through the 
pressure scale height H = NT/pg .  The boundary of the convective core is 
then the region where 

Pov = Pschwe -~  (17) 

with Pov the pressure at the overshoot boundary, and Pschw the pressure at 
the convective core boundary determined by the Schwarzschild criterion. 

a = 0: The convective core is identical to the "Schwarzschild" core 
a = 1: The core boundary is at a location where the pressure is a factor 

e lower (i.e. one scale height outwards). 
Other approaches of the overshoot, such as diffusive mixing including the 

concept of most effective scale length (Deng et al. 1996a,b) or t ime-dependent 
compressible convection (Freytag et al. 1996), have been published in the 
recent year (see also the review by Zahn 1992). 

The influence of semiconvection and overshoot on the internal structure 
is shown in Table 2 (from Aubert  et al. 1996), giving the mass of the core 
at various evolutionary stages, for various combinations of convection, over- 
shooting and semiconvection. Models are given for the two different criteria 
for convective instability (Ledoux and Schwarzschild). Although for a 20 Mo 
star the differences remain relatively small for the hydrogen exhausted core 
(max. 1.4 Mo or 25 %), they can be as large as a factor 2 for the carbon 
exhausted core. 

3.4  D r e d g e - U p  P h a s e s  in t h e  Life o f  a S tar  

During the evolution there are particular phases that  are interesting with 
regard to the composition of the atmosphere. Such phases can occur each 
t ime an outer convective zone descends deeply inward the star. When this 
zone reaches layers of former nuclear burning, the products of that  process 
are mixed in and brought to the surface. Such a process is called a dredge-up. 

a) Climbing the giant branch: the first dredge-up. 
When the star reaches the left side of the Hertzsprung-Russell  diagram 

after core hydrogen burning, it moves upward along the Hayashi track. Dur- 
ing that  phase the outer  convective zone grows inward. In a 3 M O model 
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Table 2. Core masses at various evolutionary (nuclear exhausted) stages, for 
different combinations of convection, overshooting and semiconvection (Table 
from Aubert et al. 1996) 

Convection Oversh. Semiconv. Mr Mco MONe Ref. 
Criterion (H-exh) (He-exh)(C-exh) 

Ledoux No No 5.7 2.2 2.0 1 
Ledoux Yes Yes 6.2 3.7 3.5 1 
Schwarzschild No No 6.0 3.8 3.7 2 
Schwarzschild Yes No 7.1 5.1 ~ 4.0 3 
Schwarzschild No No 6.1 4.7 3.8 4 

Ref.: 1: Woosley and Weaver (1988); 2: Nomoto and Hashimoto (1988); 
3: Meynet and Arnould (1993); 4: Aubert et al. (1996). 

(Z=0.02, X=0.70, Mowlavi 1995) it reaches down to almost 0.4 M O. During 
the previous core hydrogen burning the convective core extended outward to 
0.58 M o. Hence, products of CNO-burning are brought up to the surface 
when the star evolves to the top of the red giant branch. 

A similar behaviour was found in a 6 M® star with the same composition, 
but not in the 3 Mo star with lower metallicity (Z=0.001, Mowlavi 1995). 

b) The second dredge-up. 
A new opportunity to bring nuclear burning products to the surface occurs 

in intermediate mass stars after core helium burning when a new approach 
of the Hayashi boundary causes the outer convective zone once more to move 
deeply inward to reach the chemical discontinuity between the hydrogen-rich 
outer layers and the helium-rich region above the helium-burning shell. The 
resulting mixing increases the helium and nitrogen content of the envelope. 

c) The third dredge-up. 
This phase occurs in asymptotic giant branch stars of more than 2 Mo, 

when the outer convection zone merges with the convection zone between the 
hydrogen and the helium burning shell, which occurs during a thermal pulse 
of the latter (cf. Sect. 4). 

3.5 Anchored  Shell Sources 
( the  Node  Theo rem for Active Shell Sources) 

After core hydrogen burning a hydrogen shell source develops at the border of 
the contracting core. Active shell sources tend to remain at the same distance 
from the center (by active we mean that it contributes significantly to the 
total energy production of the star). This characteristic is known as the node 
theorem (Fig. 3). 
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Fig.  3. The node theorem: an active shell with temperature Tc at a distance 
rc from the center, outside a core mass Me. A polytropic relation is applied 
to the envelope 

Consider a shell S at a distance rs from the center, with temperature  Ts.  
The central mass underneath the shell is Me. 

Assume that  the shell source region can be considered as an ideal gas with 
radiation and that  the star is in hydrostatic equilibrium. Moreover we adopt  
a polytropic expression for the envelope, p = kT n. This is valid if Pg /Pr  
constant, which means that the shell must be active. The proper value of n 
here is 3. We can then write 

o r  

p _ Nokp___~T + 3aT4 (18) 
# 

dP d P d T  Nok n+l dT  
dr - dT dr - - ~  ~ P-~'r 

with ~ = Pg/Ptot .  
Hydrostatic equilibrium leads to 

(19) 

dPs GM¢ 
- -  _ ( 2 0 )  
dr rs2Ps 
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After combining the two equations and integrating the temperature one 
obtains 

Ts = B -p GM¢ 1 
Nok an+l rs + constant (21) 

or 
1 

Ts ~ - (22) 
rs 

When the shell is moved to the center the shell temperature rises. This 
causes an increase in the nuclear energy production, resulting in a rising 
gas pressure. The increase in gas pressure moves the shell outwards again. 
Inversely, if the shell is moved outward, its temperature drops, the nuclear 
energy production decreases, with a corresponding decrease in gas pressure, 
moving the shell back inwards. Hence, a shell tends to remain at a fixed 
position. 

Shell --+ Center : Ts 1"=> enuc I"==> Pst:=> rs t 
Shell --+ Out : Ts  $=> fnuc $=::> Ps $::> rs $ 
When a shell source develops, the core becomes inert (apart from a small 

contribution from gravitational contraction). Volume changes are reversed at 
the boundaries of the active shell. In the post core hydrogen burning stage 
this results in an expansion of the outer envelope, balancing the contraction 
of the inert helium core. The star rapidly develops into a red giant. 

3.6 Mass  M o t i o n s  o f  D i f f e r e n t  Shel ls  

Shell sources may be active or non-active for some time. Because of the 
different temperature ranges required for each burning, neighbouring shell 
sources can influence each other. And because of the different temperature 
dependence of the reactions, the shell sources generally move with different 
mass "velocities" (Ms) through the mass. 

Denoting Xi the mass concentration of the reacting element i ahead of 
the shell source, and ci the energy released per gram of mass burned, then 
the mass velocity is given by Ms = Li/(ciXi). The relative motion of the 
hydrogen and helium shell sources through the mass is then given by 

r~iS LH ~ne XHe 
- -  - - -  ( 2 3 )  

MHe LHe ~H XH 

Note that roughly equal velocities of the shells (and hence a stat ionary 
situation) are obtained for LH ~ 7LHe, since XH ~ 0.7, XHe ~ 1 and ~H/~He ~-~ 
10. 

While the shell is burning outwards, it tends to concentrate on gradually 
smaller mass ranges. Changes become more rapid (changes are defined here by 
the time interval it takes to shift the very steep chemical profile over a range 
that  is comparable to its extension). If the shell is thermally unstable, the 
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assumption of complete equilibrium has to be abandoned. Such instabilities 
differ from perturbations of the central nuclear burning region by 
a) different geometry 
b) different reaction of the density to an expansion. 

The expansion of a thin shell source will not stabilize it, but will enforce 
the liberation of energy by heating. This means that  the shell source reacts 
just  as if the equation of state were r ,-~ l / T ,  reflecting an instable situation. 

The pulse instability was first found by Schwarzschild and Harm (1965) 
for a helium shell source in a s t a r  of 1 M o. In a s t u d y  of a 5  M o star 
Weigert (1966) found the same instability in a two-shell source model. He 
also found that  the instability leads to nearly periodic relaxation oscillations, 
called thermal pulses. 

4 T h e r m a l  P u l s e s  o r  S e c u l a r  S t a b i l i t i e s  o f  S h e l l  S o u r c e s  

How can we explain the strange behaviour described in the foregoing section? 
We therefore need to consider the difference between density changes in the 
core and in the shell. 

4.1 D e n s i t y  C h a n g e s  o f  a N u c l e a r  B u r n i n g  Z o n e  

We consider two different situations, a nuclear burning core and a nuclear 
burning shell. For the spherical core we have m ,-~ pr 3, and a radial expansion 
(at constant mass, dm - 0) therefore leads to d p / p  - - 3 d r / r .  Now consider 
a shell at a distance ro from the center, with thickness D (r = ro q- D). If the 
shell expands we have dr -- dD (ro ~ constant) and hence, d p / p  = - d D / D  -- 
- r / D  dr / r .  

If we assume that  the changes near the boundary are homologous (i.e. 
r+ dx  = r ( l+x) ) ,  we obtain different proportionality constants for the changes 
of the density with radius in the core and in a shell: 

Central: 3 Shell: r / D  

4.2 Shel l  P e r t u r b a t i o n  a n d  P r e s s u r e  C h a n g e  

Consider the change of pressure in the shell source as a hydrostatic reaction 
to the lift of the layers above (again we assume homology for simplicity). 

Assume that  the shell expands to get rid of the perturbation: d D / D  > 0. 
This causes a corresponding change of the density d p / p  < 0, but  only a very 
small increase d r / r  of the radius if the shell thickness is small compared to 
the distance to the center (D/r  < <  1). 

As a result the layers are hardly lifted and therefore the weight of these 
layers remains constant. In that  case hydrostatic equilibrium tells us tha t  
there is no decrease in pressure ( d P / P  ~ 0). 
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Indeed, the homology relation d P / P =  -4dr/r and dp/p = - r / D  dr/r  com- 
bine to dP/P = 4D/r dp/p. 

Using the equation of state in the form dp/p = adP/P  - 5dT/T, we find 
that dp/p = -SdT/T,  since dP/P goes to zero for small values of D/r. 

Hence we obtain a result that is similar to an equation of state of the 
type p .~ 1/T. The expansion of the helium shell leads to an increase of its 
temperature. This secular instability of the shell results in nearly periodic 
relaxation oscillations. 

Fig. 4. Structure of a star with two active shell sources outside an inert 
Carbon-Oxygen core 

More precisely, when we have two active shell sources (helium and hy- 
drogen) surrounding an inert CO-core, a thermal pulse evolves through the 
following sequence of events (Fig. 4). In the helium burning shell the energy 
production rises steeply as the energy rate is proportional to T 5. This causes 
an increase of the pressure in the inner shell region, pushing the H-shell out- 
wards. The H-shell dies out, and the total energy production decreases below 
the amount L that is lost at the surface. The difference is then produced by 
contraction of that region (interpulse phase). The H-shell goes down, heats 
up and finally ignites again. 
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As model calculations show, a shortlived convective shell develops above 
the helium shell during the thermal runaway. This shell mixes helium burning 
products into the intershell region, and at the same time it brings helium- 
enriched intershell matter into the nuclear burning region. For a 5 M O star 
Kippenhahn and Weigert (1967) found a lifetime of--, 70 years for the thermal 
runaway, whereas the convective shell only exists in the first 50 years. The 
time between two pulses increases gradually, from 3200 years for the first, to 
4300 years for the sixth pulse in their models. The first pulse occurs when 
the helium shell has reached m/M-0.1597, while the hydrogen shell is at 
m/M=O.1603. It is the latter that provides almost all the surface luminosity, 
which is only little affected by the pulses. In small mass stars (,-, 0.6 M®) 
the period between pulses may reach hundreds of thousands of years. The 
pulse amplitude grows with each successive event. 

For the atmospheric conditions it is interesting to see that the outer con- 
vection zone reaches almost to the H-He discontinuity, retreats upwards at 
each pulse and moves back to the discontinuity in the interpulse phase. If the 
outer convection zone descends below the discontinuity and merges with the 
shortlived convection zone above the helium shell a third dredge--up phase 
occurs (M > 2 Mo). Intershell matter from carbon synthesis can be dredged 
up to the surface. The observed differences between oxygen-rich giants and 
carbon-rich giants can probably be explained through this process. 

5 C e p h e i d s  

(as  a n  A n s w e r  t o  t h e  R e q u e s t  o f  T .  L e  B e r t r e )  

5.1 The  Pe r iod -Dens i ty  Re la t ion  

Intermediate mass stars may pulsate with periods between 2 and 40 days 
during the phase of core helium burning. In this phase we call them Cepheids 
(in the case of low mass stars: RR Lyrae variables), representing variable 
stars (with variations in radial velocity, radius and effective temperature). 
Maximum luminosity and minimum radius have a time lag, the maximum 
luminosity corresponds with the largest contraction velocity. 

In modelling such pulsations astrophysicists get a better understanding of 
the stellar interior. The observed radial pulsations result from sound waves 
that resonate in the interior. An estimate of the pulsation period can be 
obtained by evaluating the crossing time of a sound wave through a star with 
radius 1~ and average density p. In such a star the adiabatic sound velocity 
is given by (Carroll and Ostlie 1996) 

vs=  
with 7 the ratio of specific heats 7 = cp/cv = (dlnP/dlnp)ad. 

(24) 
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The pressure follows from hydrostatic equilibrium, assuming a constant 
density (!): 

dP _ 41r,~p2 r 
dr 3 

b 

Integrating from P = 0 (r = R) we obtain: 

2 2 P ( r ) =  ~rGp (R 2 - r  ~) . 

The pulsation period can then be estimated as 

(25) 

(26) 

/ - /~  2 f  R dr i 3~r - -- (27) 
vs 27Gp 

If we take M = 5 M o and a radius of R = 50 R o (representing a typical 
Cepheid), we obtain/7 ~ 10 days. 

5.2 The  Valve Mechan i sm 

In order for pulsations to work one has the following basic equation 

J dQAT 
- -  > 0 (2s) 

To 

with AT the cyclic variation of the temperature (i.e. the deviation from To). 
One can explain the equation as follows: 

In order to perform work against the surroundings, heat has to be ab- 
sorbed at high temperature, and has to be emitted at low temperature. For 
a pulsation each small gas element has to absorb energy during compression 
(when the temperature is high) and to emit heat during the expansion (when 
the temperature is low). 

The process above shows similarities to the process in an explosion motor 
with valves. 

In a star the energy flux in the atmosphere is constant. During maxi- 
mum compression the heat leakage has to be small, and during expansion it 
has to be large. The change of the leakage can be produced by the opacity 
changes during compression (large x's are needed) and expansion (small x's 
are needed). 

5.3 The  K a p p a  Mechan i sm (Baker  and  K i p p e n h a h n  1962) 

The pulsation is driven by the opacity, which is modified by changing ioniza- 
tion states. The mechanism can only work in a state of partial ionization. 

Indeed, adopting a fully ionized gas and Kramers opacity, the kappa mech- 
anism will not work as p and x vary in the opposite way during compression 
and expansion. 
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However, in an ionization zone (H- ,  He, He +) the mechanical energy 
of a compression will be used to increase the ionization, with only a slow 
rise of the temperature.  This means that the third adiabatic coefficient 73 -- 
p / T  d T / d p +  1 is only slightly larger than 1. If we put 7 3 - 1  = 1, the Kramers 
opacity reduces to x '~ pl-~,~,x. 

For a positive power ~ increases for compression and decreases for expan- 
sion. Hence, the condition for pulsation becomes 1 -3 .5A > 0 or A < 2/7 
0.38. 

If this condition is fulfilled, the kappa mechanism evolves through the 
following cycle: 

The ionization zones compresses adiabatically, increasing ~. Because of 
the energy increase (from the larger absorption) the pressure starts to in- 
crease. This results in an adiabatic expansion. At the end of it an acceler- 
ating phase of energy release follows the decrease of ~. At the end of it the 
maximum luminosity coincides with the maximum contraction velocity. 

Let us now examine the conditions of the ionization zones. For the hydro- 
gen and helium ionization zone the temperature range is about 104 K, while 
for the He + zone it is about 2 104 K. Stars hotter than type G have zones 
that  are too far outside and too thin, so their heat capacity is insufficient to 
drive the pulsations. In stars earlier than type A the He + zone is too far out 
and too shallow. 

On the other hand, if the zones are too far inside the star, damping by 
the thick outer layers will suppress the starting pulsations. 

Summarizing, the pulsations can occur when the ionization zones have a 
good heat capacity and when they are not too far inside. Figure 5 shows the 
relative location of the shells for different masses of the star (according to 
Carroll and Ostlie 1996). 

6 M a s s i v e  S t a r s  ( M  > 9 M ® )  

We recall some of the characteristics of this group of stars. They evolve 
through quiet phases of nuclear burning beyond helium. In the HR-diagram 
their location is bounded by a luminosity boundary, the Humphreys-Davidson 
limit (for effective temperatures < 4 dex the bolometric magnitude does 
not exceed -9.5 to -10). Hot stars wit Mbol ---- -10 to -11 exist, but  no cool 
stars. Stars with masses exceeding 15 M O show signs of strong stellar winds. 
These winds are large enough to cause a substantial mass decrease, thereby 
removing the outer layers of the star. As a result the initial convective core 
appears at the surface and enhancements in He, C, N, Ne and 0 appear in 
the spectrum. This is shown in Table 3 reflecting the results of calculations 
of Maeder (1990) for various masses. The 85 M O star leaves a remnant  of 
43.5 M 0 after core hydrogen burning, with a hydrogen by mass fraction of 
0.25 at the surface. 
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Fig. 5. Relative location of hydrogen and helium ionization zones for different 
effective temperatures (adapted from Carroll and Ostlie 1996). The vertical 
axis displays the logarithm of the fraction of the star's mass that lies above 
each point in the star 

With models of stellar evolution generic relations have been established 
between massive O, B stars, LBVs, blue and red supergiants and WR stars, 
as outlined in Fig. 6 (Langer 1996). 

As mentioned earlier overshooting increases the size of the convective core, 
causing an increase of the main sequence lifetime, and a widening of the main 
sequence band in the HR diagram. On the other hand a strong stellar wind 
mass loss may lead to a decrease of the surface hydrogen abundance, even 
causing a rightward evolution in the HR diagram. 

6.1 Mass Loss by  Ste l lar  W i n d  

I will only discuss aspects relevant to stellar evolution, as the stellar wind 
topic has been extensively treated in foregoing chapters. Mass loss in massive 
stars deeply affects the stellar structure of the star: effective temperature, lu- 
minosity, chemical abundances at the surface etc. The more massive the star 
is the more mass it loses. Following Maeder (1994) we combine the average 
observed mass loss rate with the mass-luminosity relation and the evolution- 
ary timescale from model calculations to yield the fraction of mass lost by 
evolution: 
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M > 601~ 

O-----~ Of--*,,- BSG--~ (LBV) - - -~  WN-----~ WC---~ (WO)---=.- SN 

2 5  I ~  < I'I _.< 6 0  I'~ 

0 - - - ~  BSG--~,-YSG--~" R S G . I - ~  WN--~-  (WC).-=-.  SN 

Pl < 2 5  I ~  

O--=-(BSG)-*" RSG---~ YSG Cepheid- - -=-  RSG----~ SN 

( BSG=B] ue Supergiant, RSG=Red Supergiant, LBY=Lumi nous B1 ue Variable, 
YSG=Yello,v Supergiant, SN= Supernova, WN-C-O=WoIf- Rayet tgpea) 

Fig.  6. Generic relations between luminous stars, according to Langer (1996, 
upper), Maeder (middle), Langer (1996, lower scenario) 

5M = < g > t e v  • 
M M 

a) Mass loss rate (Nieuwenhuyzen and de Jager 1990) 

(29) 

10_7.93 Ll'64M 0'16 
M = - Teffi.61 M o / y r  . 

b) Evolutionary timescale (Maeder 1994, solar abundances): 

(30) 

tev ---- 107"STM -0"72 yr . 

c) Mass-luminosity relation (Maeder 1994): 

L = 10183M 2'17 L e . 

(31) 

(32) 

Combining this we obtain 

&M 
,~  M ~ ( 3 3 )  

M 

The above result is of course model dependent, and hence subject to the 
metallicity. (Note: The increase of the convective core mass with initial stellar 
mass is proportional to M). 

Calculations of stellar evolution with stellar wind mass loss have been per- 
formed with various parametrizations, all essentially based on the luminosity. 
Some examples are: 
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T a b l e  3. Remnant masses and main sequences lifetimes for a massive star 
of 20 Mo with stellar wind mass loss according to (30) 

N tins M/M O 
in 10 s yrs (end main sequence) 

0 6.14 20.0 
100 6.88 17.9 
300 7.92 14.0 
1000 11.39 6.4 

or 

log( -M)  = m + nlogL (34) 

(de Loore et al. 1976) 

-t~I = NL c~ (35) 

log(-l~I) = 1.421ogL + 0.61iogR - 0.99iogM - 12.79 

(Lamers 1981) 

(36) 

log(-~I)  = 1.241ogL + 0.811ogR + 0.161ogM - 14.02 

(de Jager et al. 1988) and for WR stars, 

(37) 

log( -M)  = a l 0 - r M  ~'5 . (38) 

(with a = 0.6 to 1, Langer 1989). 
The influence of the wind on the evolution in the main sequence can easily 

be demonstrated with (35). Results for 4 values of the wind parameter  N are 
shown in Table 4 for a 20 Mo star. The main sequence lifetime increases with 
increasing wind, while the remnant mass at the end of the main sequence 
decreases substantially. In the HR diagram stars with stronger winds evolve 
at lower luminosity. 

6.2 Ef fec t s  on  t h e  P o s i t i o n  in  t h e  H R D  

The mass loss by stellar wind is an energy loss to the star. This loss will 
affect the outer characteristics, i.e. its effective temperature and luminosity. 
An increased mass loss will move the red points of the main sequence evolu- 
tionary tracks (Terminal Age Main Sequence or TAMS) to the right. Hence 
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T a b l e  4. Mass of the helium core (in M®) of a 60 M® star for three different 
wind regimes 

M = 0 Weak lVl Strong l~I 
start  He-burning 20 17.5 15 
end He-burning 21.7 21.9 20 

the main sequence band will widen (de Loore et al. 1976). T h e  mass loss rate 
is calculated as a simple luminosity depending function: M = NL/c 2. 

A very large mass loss rate moves the TAMS back to the left. For increas- 
ing mass loss rates the final masses decrease and trivially the main sequence 
lifetimes increase (because the central temperature increases slower). This 
mass decrease removes the outer layers, and after some time the boundary of 
the initial convective core may appear at the surface. During the further evo- 
lution the outer layers become more and more helium enriched (N(H)/N(He) 
goes down). 

When the hydrogen abundance by weight at the surface, Xatm, drops 
below 0.4 - 0.3, the opacity in the outer layers changes drastically (the effect 
is temperature dependent, for lower temperatures the effect occurs at Xatm 
0.4, for high temperatures at Xatm ~ 0.3). The outer layers contract rapidly 
while the luminosity remains about the same. Hence, Teff increases and the 
star moves to the blue part of the HRD. 

Also more advanced stages are strongly affected by the strength of the 
stellar wind. This is shown in Table 4, giving the mass of the helium core 
of a massive star at the beginning and the end of helium burning for three 
different wind regimes. 

6.3 T h e  Ef fec t  o f  O v e r s h o o t i n g  

Overshooting of the convective core (cf. Sect. 3.3.3) is the second mechanism, 
influencing the structure of massive stars, and competing with the stellar wind 
mass loss. Using the parameter a, defined as the fraction of the pressure scale 
height, for the amount of overshooting, we have the following effects in the 
HRD: larger values of a result in higher main sequence luminosity, very high 
values move the TAMS to the right. Table 5 shows how the initial mass of 
the convective core is affected for different initial masses and different values 
of a. 

6.4 Internal Mixing 

Maeder (1987) estimated the mixing timescale for massive stars. As most 
mixing mechanisms are dissipative, the diffusion coefficient depends on the 



Atmospheres and Interior Models 339 

Tab le  5. Mass of the convective core for initial masses 20 to 100 M®, and 
different amounts of overshooting a = 1/Hp. All masses are in M® 

Mass Mschw Mov 
a = 0  ~ = 0 . 2 5 a = . 5 0 ~ = l . 0 0 a = 1 . 5 0  

100 78 80 83 87 92 
80 58 61 64 68 72 
60 43 43 45 49 52 
40 24 26 28 31 34 
30 16 18 19 22 24 
20 9 11 12 14 15 

viscosity coefficient ~,. In general the characteristic time of mixing is (Schatz- 
mann 1977) 

which is approximately 

4 tmix = ~-'~ ( ~  R-- -~)  2 (39) 

R 2 
tmix ~-~ 0 . 4 ~  (40) 

< D >  

with < D > an appropriate average. 
In massive stars the viscosity v is essentially radiative 

4 aT 4 
~' - 15 (c,~p ~) " (41) 

Taking T ~ pmH/k  G M / R  gives tmix as 

tmix 0.1 (m G) M 2 (42) 

with Re, = D/u a factor of the order of 102. 
We see that  the timescale of mixing decreases rapidly with increasing 

mass, faster than the evolutionary timescale given earlier. This suggests that  
massive stars are close to a partial mixing stage or, as was suggested by 
Maeder (1987), may even evolve close to homogeneity. 

6 . 5  R a d i u s  C o r r e c t i o n  for  H y d r o s t a t i c  S ta r s  

Computer codes usually use hydrostatic atmospheres, with no line formation 
processes. The models therefore do not give spectroscopic information, but 
serve to calculate the absolute dimensions of the star in a simplified way. This 
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saves computer  memory and calculation time. For a large range of masses, 
and large parts of the evolution this approximation is quite satisfactory. How- 
ever, for massive stars such as WR stars this is inaccurate. These stars have 
extended, dynamic atmospheres, and therefore a different radius. A proce- 
dure to correct hydrostatic radii for the effect of dynamic, outflowing winds 
was developed by de Loore et al. (1982). They combined three relations, 

a) the optical depth: 

d r  = - ~ p d r  . (43) 

b) the continuity law: 

IVI -- -41rr2v(r) . (44) 

c) the velocity law: 

into 

v(r )  = voo(l - (45) 

f l  
d r  = ~¢ 2 (46) 

voo(1  - 

Adopting electron scattering as the dominant  absorption source we can 
write ~ -- (tel -- 0.22 (I+X).  Integrating the luminosity part from 0 to r and 
the radius part correspondingly from oo to r, we obtain after some calcula- 
tions an expression for the radius at ~" -- 2/3: 

l~fr = 1% + - -  (47) 
8~V¢~ 

For r = 1 we get a difference of < 10%. Taking v ~  = 3000 km/s  we get 

l~ff ---- R +  7.97 10 4 I1VI] . 

The corresponding effective temperature is 

(48) 

log Ten = 3.76 + 0.25 lOgL- ~ - 0.5 logP~fr . (49) 

For WR stars we obtain shifts of AlogTeff ~ 0.3 - 0.6. 
Recently, Heger and Langer (1996) calculated new models for WR stars 

including a grey optically thick, stationary outflowing wind. They show that  
the radius of the sonic point is almost identical to the radius of a helium star 
with the same mass but without mass loss. Such small radii are confirmed by 
recent studies of very close WR + O systems (Moffat and Marchenko 1996). 
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6.6 New Models  for Massive Stars 

In the standard method the structure equations are solved with the boundary 
conditions at the center and at the surface. The latter are provided by the 
outer layer calculations ("atmosphere"). These outer layers are treated as 
hydrostatic plane parallel grey atmospheres in the Eddington approximation. 

For phases with mass loss this phenomenon, described by M, is added to 
the evolution as a stepwise decrease of the mass according to some empirical 
relation (cf. Sect. 6.1). 

A better approach is to combine stellar structure and atmosphere models, 
using for the latter spherically expanding non-LTE atmospheres including 
line blanketing (Costar: Schaerer et al. 1996). Such models not only describe 
the internal evolution, but also the detailed spectral evolution (continuum 
and line spectra). 

Models have recently be calculated for the main sequence evolution for 
40, 60 and 85 M O. The HRD evolution (and hence also the inner structure) 
is nearly identical to the "standard" models. The 85 M O evolves close to the 
Eddington limit, and shows larger differences than the 40 and 60 Mo cases. 
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Limb-darkening 61 
Line blanketing 41, 51-56, 63,208 



Subject Index 347 

Line driven wind 70, 85, 87, 159-184, 
189,218,252, 255 

Line transition s e e  Radiative 
transition, Two-level atom 
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- A 1 0  1 0 4  

- C 1 0 1  

- C 2  136 
- C2H 101,104 
- C2H2 101,104, 136,148 

C2S 103 



348 Sub jec t  Index  

- Cal l2  103,148 
- CaN 103 
- C3S 103 
- C s H  148 
- Cn 104 
- C , ~ H  103, 148 
- C H 3 C N  103 
- C N  1 0 1 ,  103, 136 
- C O  101-103, I36, 142, 145,146, 148 

- C O 2  151 

- CS 103, 148 

- Cyanopolyynes 145 

- ( F e ) .  104 

- H 101  

- H2 9 5 , 1 0 1 , 1 0 3 ,  145  

- H 2 0  103, 136, 145,146, 148, 151 
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- dus t -gas  85, 90, 95, 113,118,  119, 

126 
- efficiency fac to r  163 
- pho tons -gas  159-163, 193, 252 
Mon te  Car lo  m e t h o d  52 ,203 ,266 ,  
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- late-type star 92 
- nonmonotonic wind 219, 223, 229 
- theory 195-203, 207, 208 
- s e e  a l s o  Beals classification 
- s e e  a l s o  Black trough 
- s e e  a l s o  Blue edge 
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Rayleigh-Taylor instability 324 
Recombination line s e e  Emission line 
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- U V  181,182,187, 188, 192, 193, 195, 
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220, 232, 24O 
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228,231, 233 
ROSAT 278, 279,286, 287, 289 
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283-288 
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RSG 134,136,335 
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Saha equation 6, 50 
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264, 266, 274, 275 
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Schwarzschild criterion 321,324, 326, 
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SEI 203, 270, 271 
Self-collision time 293 
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30, 32 
Semi-regular variables 90, 136 
Semiconvection 324-327 
SEST 227 
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Shear stress 247-249 
Shell around late-type star 91-129, 

137, 139-154 
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- disk 241,249, 256-260 
- wind 89, 99, 126, 179-181,208, 219, 

230, 231 
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Skylab 279 
SN 1987a 1, 90 
Sobolev approximation 41,165,176, 
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207, 211,272 
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SEI 
SOHO 290,292 
Sonic point 73, 100, 111,205,252,253, 

255-257, 307, 340 
Sound wave driven wind 85-87 
Source function 12, 13, 15, 19, 23, 33 
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- disk 262,271-273 
- linear 14, 23, 29 
- P Cygni profile 200 
- two-level atom 22, 24, 25, 27, 28 
Specific intensity 8, 12, 15, 17, 18 
Spectral energy distribution 263 
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Spectroscopic diagnostics 57-66, 97, 

137-139,189-223, 231,270, 274-275 
Spectrum synthesis 58, 60, 61, 122 
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Statistical equilibrium 4, 22, 43-45, 
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Stellar evolution 1, 20, 57, 65, 66, 69, 

134, 136, 317-341 
- mass loss 70, 133, 134, 188, 334-338 
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Sun 1,279, 280, 282, 303, 305 
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- extreme ultraviolet 290, 292 
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- late-type star  wind 93, 95,115, 116, 
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- from P Cygni profile 198, 205,209, 
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Thermodynamics 71,115 
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- wind 97-100, 105,109, 116,181 
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equation 
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337, 340 

WR 140 90 

X-ray luminosity 285-287, 290 
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